File size: 9,877 Bytes
8173ae1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
from typing import Callable, Optional

import torch
from accelerate.logging import get_logger
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.models.cross_attention import CrossAttention
from diffusers.pipelines.stable_diffusion import StableDiffusionPipeline
from diffusers.pipelines.stable_diffusion.safety_checker import (
    StableDiffusionSafetyChecker,
)
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from diffusers.utils.import_utils import is_xformers_available
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer

if is_xformers_available():
    import xformers
    import xformers.ops
else:
    xformers = None

logger = get_logger(__name__)


def set_use_memory_efficient_attention_xformers(
    self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None
):
    if use_memory_efficient_attention_xformers:
        if self.added_kv_proj_dim is not None:
            # TODO(Anton, Patrick, Suraj, William) - currently xformers doesn't work for UnCLIP
            # which uses this type of cross attention ONLY because the attention mask of format
            # [0, ..., -10.000, ..., 0, ...,] is not supported
            raise NotImplementedError(
                "Memory efficient attention with `xformers` is currently not supported when"
                " `self.added_kv_proj_dim` is defined."
            )
        elif not is_xformers_available():
            raise ModuleNotFoundError(
                (
                    "Refer to https://github.com/facebookresearch/xformers for more information on how to install"
                    " xformers"
                ),
                name="xformers",
            )
        elif not torch.cuda.is_available():
            raise ValueError(
                "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is"
                " only available for GPU "
            )
        else:
            try:
                # Make sure we can run the memory efficient attention
                _ = xformers.ops.memory_efficient_attention(
                    torch.randn((1, 2, 40), device="cuda"),
                    torch.randn((1, 2, 40), device="cuda"),
                    torch.randn((1, 2, 40), device="cuda"),
                )
            except Exception as e:
                raise e

        processor = CustomDiffusionXFormersAttnProcessor(
            attention_op=attention_op)
    else:
        processor = CustomDiffusionAttnProcessor()

    self.set_processor(processor)


class CustomDiffusionAttnProcessor:
    def __call__(
        self,
        attn: CrossAttention,
        hidden_states,
        encoder_hidden_states=None,
        attention_mask=None,
    ):
        batch_size, sequence_length, _ = hidden_states.shape
        attention_mask = attn.prepare_attention_mask(
            attention_mask, sequence_length, batch_size)
        query = attn.to_q(hidden_states)

        crossattn = False
        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        else:
            crossattn = True
            if attn.cross_attention_norm:
                encoder_hidden_states = attn.norm_cross(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)
        if crossattn:
            detach = torch.ones_like(key)
            detach[:, :1, :] = detach[:, :1, :] * 0.
            key = detach * key + (1 - detach) * key.detach()
            value = detach * value + (1 - detach) * value.detach()

        query = attn.head_to_batch_dim(query)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        return hidden_states


class CustomDiffusionXFormersAttnProcessor:
    def __init__(self, attention_op: Optional[Callable] = None):
        self.attention_op = attention_op

    def __call__(self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None):
        batch_size, sequence_length, _ = hidden_states.shape

        attention_mask = attn.prepare_attention_mask(
            attention_mask, sequence_length, batch_size)

        query = attn.to_q(hidden_states)

        crossattn = False
        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        else:
            crossattn = True
            if attn.cross_attention_norm:
                encoder_hidden_states = attn.norm_cross(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)
        if crossattn:
            detach = torch.ones_like(key)
            detach[:, :1, :] = detach[:, :1, :] * 0.
            key = detach * key + (1 - detach) * key.detach()
            value = detach * value + (1 - detach) * value.detach()

        query = attn.head_to_batch_dim(query).contiguous()
        key = attn.head_to_batch_dim(key).contiguous()
        value = attn.head_to_batch_dim(value).contiguous()

        hidden_states = xformers.ops.memory_efficient_attention(
            query, key, value, attn_bias=attention_mask, op=self.attention_op
        )
        hidden_states = hidden_states.to(query.dtype)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)
        return hidden_states


class CustomDiffusionPipeline(StableDiffusionPipeline):
    r"""
    Pipeline for custom diffusion model.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.).

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
        text_encoder ([`CLIPTextModel`]):
            Frozen text-encoder. Stable Diffusion uses the text portion of
            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
            the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
        tokenizer (`CLIPTokenizer`):
            Tokenizer of class
            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
        unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents.
        safety_checker ([`StableDiffusionSafetyChecker`]):
            Classification module that estimates whether generated images could be considered offensive or harmful.
            Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
        feature_extractor ([`CLIPFeatureExtractor`]):
            Model that extracts features from generated images to be used as inputs for the `safety_checker`.
        modifier_token_id: list of id of tokens related to the target concept that are modified when ablated.
    """
    _optional_components = ["safety_checker",
                            "feature_extractor", "modifier_token_id"]

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
        scheduler: SchedulerMixin,
        safety_checker: StableDiffusionSafetyChecker,
        feature_extractor: CLIPFeatureExtractor,
        requires_safety_checker: bool = True,
        modifier_token_id: list = [],
    ):
        super().__init__(vae,
                         text_encoder,
                         tokenizer,
                         unet,
                         scheduler,
                         safety_checker,
                         feature_extractor,
                         requires_safety_checker)

        self.modifier_token_id = modifier_token_id

    def save_pretrained(self, save_path, parameter_group="cross-attn", all=False):
        if all:
            super().save_pretrained(save_path)
        else:
            delta_dict = {'unet': {}}
            if parameter_group == 'embedding':
                delta_dict['text_encoder'] = self.text_encoder.state_dict()
            for name, params in self.unet.named_parameters():
                if parameter_group == "cross-attn":
                    if 'attn2.to_k' in name or 'attn2.to_v' in name:
                        delta_dict['unet'][name] = params.cpu().clone()
                elif parameter_group == "full-weight":
                    delta_dict['unet'][name] = params.cpu().clone()
                else:
                    raise ValueError(
                        "parameter_group argument only supports one of [cross-attn, full-weight, embedding]"
                    )
            torch.save(delta_dict, save_path)

    def load_model(self, save_path):
        st = torch.load(save_path)
        print(st.keys())
        if 'text_encoder' in st:
            self.text_encoder.load_state_dict(st['text_encoder'])
        for name, params in self.unet.named_parameters():
            if name in st['unet']:
                params.data.copy_(st['unet'][f'{name}'])