HugCode / app.py
nuojohnchen's picture
Update app.py
5277b0b verified
raw
history blame contribute delete
4.88 kB
import gradio as gr
import os
import spaces
from transformers import GemmaTokenizer, AutoModelForCausalLM
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
# Set an environment variable
HF_TOKEN = os.environ.get("HF_TOKEN", None)
DESCRIPTION = '''
<div>
<h1 style="text-align: center;">HugCode</h1>
<p>CodeLLaMA sfted on <a href="https://huggingface.co/datasets/nuojohnchen/hugcode-codesft"><b>HugCode</b></a> data. Made in 2023.9. </p>
</div>
'''
# LICENSE = """
# <p/>
# ---
# Built with Meta Llama 3
# """
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<img src="https://ysharma-dummy-chat-app.hf.space/file=/tmp/gradio/8e75e61cc9bab22b7ce3dec85ab0e6db1da5d107/Meta_lockup_positive%20primary_RGB.jpg" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55; ">
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">HugCode</h1>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me code questions (English/Chinese).</p>
</div>
"""
css = """
h1 {
text-align: center;
display: block;
}
#duplicate-button {
margin: auto;
color: white;
background: #1565c0;
border-radius: 100vh;
}
"""
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nuojohnchen/codellama-7b-sft-v1.3")
model = AutoModelForCausalLM.from_pretrained("nuojohnchen/codellama-7b-sft-v1.3", device_map="auto") # to("cuda:0")
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
@spaces.GPU(duration=120)
def chat_llama3_8b(message: str,
history: list,
temperature: float,
max_new_tokens: int
) -> str:
"""
Generate a streaming response using the llama3-8b model.
Args:
message (str): The input message.
history (list): The conversation history used by ChatInterface.
temperature (float): The temperature for generating the response.
max_new_tokens (int): The maximum number of new tokens to generate.
Returns:
str: The generated response.
"""
# Build conversation as pure array format
history_messages = []
for user, assistant in history:
history_messages.extend(assistant)
# conversation = [
# message, # ε½“ε‰ζΆˆζ―
# history_messages # εŽ†ε²ζΆˆζ―ζ•°η»„
# ]
conversation = ""
for user, assistant in history:
conversation += f"User: {user}\nAssistant: {assistant}<|endoftext|>\n"
conversation += f"User: {message}\nAssistant: "
tokenizer.chat_template = "User:{query}\nAssistant:{response}<|endoftext|>"
input_ids = tokenizer.encode(conversation, return_tensors="pt").to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids= input_ids,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
eos_token_id=terminators,
)
# This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash.
if temperature == 0:
generate_kwargs['do_sample'] = False
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
#print(outputs)
yield "".join(outputs)
# Gradio block
chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
with gr.Blocks(fill_height=True, css=css) as demo:
gr.Markdown(DESCRIPTION)
# gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
gr.ChatInterface(
fn=chat_llama3_8b,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="βš™οΈ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(minimum=0,
maximum=1,
step=0.1,
value=0.95,
label="Temperature",
render=False),
gr.Slider(minimum=128,
maximum=4096,
step=1,
value=512,
label="Max new tokens",
render=False ),
],
examples=[
['Implement a function to reverse a string.'],
['Sort a list of numbers in ascending order.'],
['Output Fibonacci sequence.']
],
cache_examples=False,
)
# gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.launch()