Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved. | |
# | |
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX | |
# and OPT implementations in this library. It has been modified from its | |
# original forms to accommodate minor architectural differences compared | |
# to GPT-NeoX and OPT used by the Meta AI team that trained the model. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch Qwen2MoE model.""" | |
import inspect | |
import math | |
from typing import List, Optional, Tuple, Union | |
import torch | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
from transformers.activations import ACT2FN | |
from transformers.cache_utils import Cache, DynamicCache, StaticCache | |
from transformers.modeling_attn_mask_utils import ( | |
AttentionMaskConverter, | |
) | |
from transformers.modeling_outputs import ( | |
MoeCausalLMOutputWithPast, | |
MoeModelOutputWithPast, | |
) | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.utils import ( | |
is_flash_attn_2_available, | |
is_flash_attn_greater_or_equal_2_10, | |
logging, | |
replace_return_docstrings, | |
) | |
from configuration_upcycling_qwen2_moe import UpcyclingQwen2MoeConfig | |
from transformers import AutoModelForCausalLM,AutoConfig,AutoModel | |
if is_flash_attn_2_available(): | |
from flash_attn import flash_attn_func, flash_attn_varlen_func | |
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa | |
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters) | |
logger = logging.get_logger(__name__) | |
_CHECKPOINT_FOR_DOC = "UpcyclingQwen2MoE" | |
_CONFIG_FOR_DOC = "UpcyclingQwen2MoeConfig" | |
# Copied from transformers.models.mixtral.modeling_mixtral.load_balancing_loss_func | |
def load_balancing_loss_func( | |
gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2, attention_mask: Optional[torch.Tensor] = None | |
) -> float: | |
r""" | |
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch. | |
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss | |
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between | |
experts is too unbalanced. | |
Args: | |
gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]): | |
Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of | |
shape [batch_size X sequence_length, num_experts]. | |
attention_mask (`torch.Tensor`, None): | |
The attention_mask used in forward function | |
shape [batch_size X sequence_length] if not None. | |
num_experts (`int`, *optional*): | |
Number of experts | |
Returns: | |
The auxiliary loss. | |
""" | |
if gate_logits is None or not isinstance(gate_logits, tuple): | |
return 0 | |
if isinstance(gate_logits, tuple): | |
compute_device = gate_logits[0].device | |
concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0) | |
routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1) | |
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1) | |
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts) | |
if attention_mask is None: | |
# Compute the percentage of tokens routed to each experts | |
tokens_per_expert = torch.mean(expert_mask.float(), dim=0) | |
# Compute the average probability of routing to these experts | |
router_prob_per_expert = torch.mean(routing_weights, dim=0) | |
else: | |
batch_size, sequence_length = attention_mask.shape | |
num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length) | |
# Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask | |
expert_attention_mask = ( | |
attention_mask[None, :, :, None, None] | |
.expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts)) | |
.reshape(-1, top_k, num_experts) | |
.to(compute_device) | |
) | |
# Compute the percentage of tokens routed to each experts | |
tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum( | |
expert_attention_mask, dim=0 | |
) | |
# Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert | |
router_per_expert_attention_mask = ( | |
attention_mask[None, :, :, None] | |
.expand((num_hidden_layers, batch_size, sequence_length, num_experts)) | |
.reshape(-1, num_experts) | |
.to(compute_device) | |
) | |
# Compute the average probability of routing to these experts | |
router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum( | |
router_per_expert_attention_mask, dim=0 | |
) | |
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0)) | |
return overall_loss * num_experts | |
# Copied from transformers.models.llama.modeling_llama._get_unpad_data | |
def _get_unpad_data(attention_mask): | |
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) | |
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() | |
max_seqlen_in_batch = seqlens_in_batch.max().item() | |
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) | |
return ( | |
indices, | |
cu_seqlens, | |
max_seqlen_in_batch, | |
) | |
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Qwen2Moe | |
class Qwen2MoeRMSNorm(nn.Module): | |
def __init__(self, hidden_size, eps=1e-6): | |
""" | |
Qwen2MoeRMSNorm is equivalent to T5LayerNorm | |
""" | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(hidden_size)) | |
self.variance_epsilon = eps | |
def forward(self, hidden_states): | |
input_dtype = hidden_states.dtype | |
hidden_states = hidden_states.to(torch.float32) | |
variance = hidden_states.pow(2).mean(-1, keepdim=True) | |
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | |
return self.weight * hidden_states.to(input_dtype) | |
# Copied from transformers.models.mixtral.modeling_mixtral.MixtralRotaryEmbedding with Mixtral->Qwen2Moe | |
class Qwen2MoeRotaryEmbedding(nn.Module): | |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): | |
super().__init__() | |
self.dim = dim | |
self.max_position_embeddings = max_position_embeddings | |
self.base = base | |
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) | |
self.register_buffer("inv_freq", inv_freq, persistent=False) | |
# Build here to make `torch.jit.trace` work. | |
self._set_cos_sin_cache( | |
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() | |
) | |
def _set_cos_sin_cache(self, seq_len, device, dtype): | |
self.max_seq_len_cached = seq_len | |
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) | |
freqs = torch.outer(t, self.inv_freq) | |
# Different from paper, but it uses a different permutation in order to obtain the same calculation | |
emb = torch.cat((freqs, freqs), dim=-1) | |
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) | |
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) | |
def forward(self, x, seq_len=None): | |
# x: [bs, num_attention_heads, seq_len, head_size] | |
if seq_len > self.max_seq_len_cached: | |
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) | |
return ( | |
self.cos_cached[:seq_len].to(dtype=x.dtype), | |
self.sin_cached[:seq_len].to(dtype=x.dtype), | |
) | |
# Copied from transformers.models.llama.modeling_llama.rotate_half | |
def rotate_half(x): | |
"""Rotates half the hidden dims of the input.""" | |
x1 = x[..., : x.shape[-1] // 2] | |
x2 = x[..., x.shape[-1] // 2 :] | |
return torch.cat((-x2, x1), dim=-1) | |
# Copied from transformers.models.mixtral.modeling_mixtral.apply_rotary_pos_emb | |
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): | |
"""Applies Rotary Position Embedding to the query and key tensors. | |
Args: | |
q (`torch.Tensor`): The query tensor. | |
k (`torch.Tensor`): The key tensor. | |
cos (`torch.Tensor`): The cosine part of the rotary embedding. | |
sin (`torch.Tensor`): The sine part of the rotary embedding. | |
position_ids (`torch.Tensor`): | |
The position indices of the tokens corresponding to the query and key tensors. For example, this can be | |
used to pass offsetted position ids when working with a KV-cache. | |
unsqueeze_dim (`int`, *optional*, defaults to 1): | |
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and | |
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note | |
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and | |
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes | |
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have | |
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. | |
Returns: | |
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. | |
""" | |
cos = cos[position_ids].unsqueeze(unsqueeze_dim) | |
sin = sin[position_ids].unsqueeze(unsqueeze_dim) | |
q_embed = (q * cos) + (rotate_half(q) * sin) | |
k_embed = (k * cos) + (rotate_half(k) * sin) | |
return q_embed, k_embed | |
# Modified from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Qwen2Moe | |
class Qwen2MoeMLP(nn.Module): | |
def __init__(self, config, intermediate_size=None): | |
super().__init__() | |
self.config = config | |
self.hidden_size = config.hidden_size | |
self.intermediate_size = intermediate_size | |
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | |
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | |
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) | |
self.act_fn = ACT2FN[config.hidden_act] | |
def forward(self, x,language_ids:Optional[torch.LongTensor]=None): | |
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) | |
# Copied from transformers.models.llama.modeling_llama.repeat_kv | |
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | |
""" | |
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | |
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | |
""" | |
batch, num_key_value_heads, slen, head_dim = hidden_states.shape | |
if n_rep == 1: | |
return hidden_states | |
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) | |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | |
# Copied from transformers.models.qwen2.modeling_qwen2.Qwen2Attention with Qwen2->Qwen2Moe | |
class Qwen2MoeAttention(nn.Module): | |
""" | |
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer | |
and "Generating Long Sequences with Sparse Transformers". | |
""" | |
def __init__(self, config: UpcyclingQwen2MoeConfig, layer_idx: Optional[int] = None): | |
super().__init__() | |
self.config = config | |
self.layer_idx = layer_idx | |
if layer_idx is None: | |
logger.warning_once( | |
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " | |
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " | |
"when creating this class." | |
) | |
self.hidden_size = config.hidden_size | |
self.num_heads = config.num_attention_heads | |
self.head_dim = self.hidden_size // self.num_heads | |
self.num_key_value_heads = config.num_key_value_heads | |
self.num_key_value_groups = self.num_heads // self.num_key_value_heads | |
self.max_position_embeddings = config.max_position_embeddings | |
self.rope_theta = config.rope_theta | |
self.is_causal = True | |
self.attention_dropout = config.attention_dropout | |
if (self.head_dim * self.num_heads) != self.hidden_size: | |
raise ValueError( | |
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" | |
f" and `num_heads`: {self.num_heads})." | |
) | |
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True) | |
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) | |
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) | |
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) | |
self.rotary_emb = Qwen2MoeRotaryEmbedding( | |
self.head_dim, | |
max_position_embeddings=self.max_position_embeddings, | |
base=self.rope_theta, | |
) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Cache] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
cache_position: Optional[torch.LongTensor] = None, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
bsz, q_len, _ = hidden_states.size() | |
query_states = self.q_proj(hidden_states) | |
key_states = self.k_proj(hidden_states) | |
value_states = self.v_proj(hidden_states) | |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
kv_seq_len = key_states.shape[-2] | |
if past_key_value is not None: | |
if self.layer_idx is None: | |
raise ValueError( | |
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " | |
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " | |
"with a layer index." | |
) | |
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | |
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | |
if past_key_value is not None: | |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models | |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
# repeat k/v heads if n_kv_heads < n_heads | |
key_states = repeat_kv(key_states, self.num_key_value_groups) | |
value_states = repeat_kv(value_states, self.num_key_value_groups) | |
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) | |
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): | |
raise ValueError( | |
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" | |
f" {attn_weights.size()}" | |
) | |
if attention_mask is not None: # no matter the length, we just slice it | |
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] | |
attn_weights = attn_weights + causal_mask | |
# upcast attention to fp32 | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) | |
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) | |
attn_output = torch.matmul(attn_weights, value_states) | |
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | |
attn_output = self.o_proj(attn_output) | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, attn_weights, past_key_value | |
# Copied from transformers.models.qwen2.modeling_qwen2.Qwen2FlashAttention2 with Qwen2->Qwen2Moe | |
class Qwen2MoeFlashAttention2(Qwen2MoeAttention): | |
""" | |
Qwen2Moe flash attention module, following Qwen2Moe attention module. This module inherits from `Qwen2MoeAttention` | |
as the weights of the module stays untouched. The only required change would be on the forward pass | |
where it needs to correctly call the public API of flash attention and deal with padding tokens | |
in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom | |
config.max_window_layers layers. | |
""" | |
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. | |
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. | |
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). | |
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Cache] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
cache_position: Optional[torch.LongTensor] = None, | |
): | |
bsz, q_len, _ = hidden_states.size() | |
query_states = self.q_proj(hidden_states) | |
key_states = self.k_proj(hidden_states) | |
value_states = self.v_proj(hidden_states) | |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
kv_seq_len = key_states.shape[-2] | |
if past_key_value is not None: | |
if self.layer_idx is None: | |
raise ValueError( | |
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " | |
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " | |
"with a layer index." | |
) | |
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | |
# Because the input can be padded, the absolute sequence length depends on the max position id. | |
rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1 | |
cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len) | |
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | |
use_sliding_windows = ( | |
_flash_supports_window_size | |
and getattr(self.config, "sliding_window", None) is not None | |
and kv_seq_len > self.config.sliding_window | |
and self.config.use_sliding_window | |
) | |
if not _flash_supports_window_size: | |
logger.warning_once( | |
"The current flash attention version does not support sliding window attention, for a more memory efficient implementation" | |
" make sure to upgrade flash-attn library." | |
) | |
if past_key_value is not None: | |
# Activate slicing cache only if the config has a value `sliding_windows` attribute | |
cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0 | |
if ( | |
getattr(self.config, "sliding_window", None) is not None | |
and kv_seq_len > self.config.sliding_window | |
and cache_has_contents | |
): | |
slicing_tokens = 1 - self.config.sliding_window | |
past_key = past_key_value[self.layer_idx][0] | |
past_value = past_key_value[self.layer_idx][1] | |
past_key = past_key[:, :, slicing_tokens:, :].contiguous() | |
past_value = past_value[:, :, slicing_tokens:, :].contiguous() | |
if past_key.shape[-2] != self.config.sliding_window - 1: | |
raise ValueError( | |
f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got" | |
f" {past_key.shape}" | |
) | |
if attention_mask is not None: | |
attention_mask = attention_mask[:, slicing_tokens:] | |
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1) | |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models | |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
# repeat k/v heads if n_kv_heads < n_heads | |
key_states = repeat_kv(key_states, self.num_key_value_groups) | |
value_states = repeat_kv(value_states, self.num_key_value_groups) | |
dropout_rate = 0.0 if not self.training else self.attention_dropout | |
# In PEFT, usually we cast the layer norms in float32 for training stability reasons | |
# therefore the input hidden states gets silently casted in float32. Hence, we need | |
# cast them back in float16 just to be sure everything works as expected. | |
input_dtype = query_states.dtype | |
if input_dtype == torch.float32: | |
if torch.is_autocast_enabled(): | |
target_dtype = torch.get_autocast_gpu_dtype() | |
# Handle the case where the model is quantized | |
elif hasattr(self.config, "_pre_quantization_dtype"): | |
target_dtype = self.config._pre_quantization_dtype | |
else: | |
target_dtype = self.q_proj.weight.dtype | |
logger.warning_once( | |
f"The input hidden states seems to be silently casted in float32, this might be related to" | |
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" | |
f" {target_dtype}." | |
) | |
query_states = query_states.to(target_dtype) | |
key_states = key_states.to(target_dtype) | |
value_states = value_states.to(target_dtype) | |
# Reashape to the expected shape for Flash Attention | |
query_states = query_states.transpose(1, 2) | |
key_states = key_states.transpose(1, 2) | |
value_states = value_states.transpose(1, 2) | |
attn_output = self._flash_attention_forward( | |
query_states, | |
key_states, | |
value_states, | |
attention_mask, | |
q_len, | |
dropout=dropout_rate, | |
use_sliding_windows=use_sliding_windows, | |
) | |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() | |
attn_output = self.o_proj(attn_output) | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, attn_weights, past_key_value | |
def _flash_attention_forward( | |
self, | |
query_states, | |
key_states, | |
value_states, | |
attention_mask, | |
query_length, | |
dropout=0.0, | |
softmax_scale=None, | |
use_sliding_windows=False, | |
): | |
""" | |
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token | |
first unpad the input, then computes the attention scores and pad the final attention scores. | |
Args: | |
query_states (`torch.Tensor`): | |
Input query states to be passed to Flash Attention API | |
key_states (`torch.Tensor`): | |
Input key states to be passed to Flash Attention API | |
value_states (`torch.Tensor`): | |
Input value states to be passed to Flash Attention API | |
attention_mask (`torch.Tensor`): | |
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the | |
position of padding tokens and 1 for the position of non-padding tokens. | |
dropout (`float`): | |
Attention dropout | |
softmax_scale (`float`, *optional*): | |
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) | |
use_sliding_windows (`bool`, *optional*): | |
Whether to activate sliding window attention. | |
""" | |
if not self._flash_attn_uses_top_left_mask: | |
causal = self.is_causal | |
else: | |
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__. | |
causal = self.is_causal and query_length != 1 | |
# Decide whether to use SWA or not by layer index. | |
if use_sliding_windows and self.layer_idx >= self.config.max_window_layers: | |
use_sliding_windows = False | |
# Contains at least one padding token in the sequence | |
if attention_mask is not None: | |
batch_size = query_states.shape[0] | |
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( | |
query_states, key_states, value_states, attention_mask, query_length | |
) | |
cu_seqlens_q, cu_seqlens_k = cu_seq_lens | |
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens | |
if not use_sliding_windows: | |
attn_output_unpad = flash_attn_varlen_func( | |
query_states, | |
key_states, | |
value_states, | |
cu_seqlens_q=cu_seqlens_q, | |
cu_seqlens_k=cu_seqlens_k, | |
max_seqlen_q=max_seqlen_in_batch_q, | |
max_seqlen_k=max_seqlen_in_batch_k, | |
dropout_p=dropout, | |
softmax_scale=softmax_scale, | |
causal=causal, | |
) | |
else: | |
attn_output_unpad = flash_attn_varlen_func( | |
query_states, | |
key_states, | |
value_states, | |
cu_seqlens_q=cu_seqlens_q, | |
cu_seqlens_k=cu_seqlens_k, | |
max_seqlen_q=max_seqlen_in_batch_q, | |
max_seqlen_k=max_seqlen_in_batch_k, | |
dropout_p=dropout, | |
softmax_scale=softmax_scale, | |
causal=causal, | |
window_size=(self.config.sliding_window, self.config.sliding_window), | |
) | |
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) | |
else: | |
if not use_sliding_windows: | |
attn_output = flash_attn_func( | |
query_states, | |
key_states, | |
value_states, | |
dropout, | |
softmax_scale=softmax_scale, | |
causal=causal, | |
) | |
else: | |
attn_output = flash_attn_func( | |
query_states, | |
key_states, | |
value_states, | |
dropout, | |
softmax_scale=softmax_scale, | |
causal=causal, | |
window_size=(self.config.sliding_window, self.config.sliding_window), | |
) | |
return attn_output | |
# Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._upad_input | |
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): | |
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape | |
# On the first iteration we need to properly re-create the padding mask | |
# by slicing it on the proper place | |
if kv_seq_len != attention_mask.shape[-1]: | |
attention_mask_num_tokens = attention_mask.shape[-1] | |
attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :] | |
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) | |
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) | |
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) | |
if query_length == kv_seq_len: | |
query_layer = index_first_axis( | |
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k | |
) | |
cu_seqlens_q = cu_seqlens_k | |
max_seqlen_in_batch_q = max_seqlen_in_batch_k | |
indices_q = indices_k | |
elif query_length == 1: | |
max_seqlen_in_batch_q = 1 | |
cu_seqlens_q = torch.arange( | |
batch_size + 1, dtype=torch.int32, device=query_layer.device | |
) # There is a memcpy here, that is very bad. | |
indices_q = cu_seqlens_q[:-1] | |
query_layer = query_layer.squeeze(1) | |
else: | |
# The -q_len: slice assumes left padding. | |
attention_mask = attention_mask[:, -query_length:] | |
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) | |
return ( | |
query_layer, | |
key_layer, | |
value_layer, | |
indices_q, | |
(cu_seqlens_q, cu_seqlens_k), | |
(max_seqlen_in_batch_q, max_seqlen_in_batch_k), | |
) | |
# Copied from transformers.models.mixtral.modeling_mixtral.MixtralSdpaAttention with Mixtral->Qwen2Moe | |
class Qwen2MoeSdpaAttention(Qwen2MoeAttention): | |
""" | |
Qwen2Moe attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from | |
`Qwen2MoeAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to | |
SDPA API. | |
""" | |
# Adapted from Qwen2MoeAttention.forward | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Cache] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
cache_position: Optional[torch.LongTensor] = None, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
if output_attentions: | |
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. | |
logger.warning_once( | |
"Qwen2MoeModel is using Qwen2MoeSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " | |
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' | |
) | |
return super().forward( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
) | |
bsz, q_len, _ = hidden_states.size() | |
query_states = self.q_proj(hidden_states) | |
key_states = self.k_proj(hidden_states) | |
value_states = self.v_proj(hidden_states) | |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
kv_seq_len = key_states.shape[-2] | |
if past_key_value is not None: | |
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | |
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | |
if past_key_value is not None: | |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models | |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
key_states = repeat_kv(key_states, self.num_key_value_groups) | |
value_states = repeat_kv(value_states, self.num_key_value_groups) | |
causal_mask = attention_mask | |
if attention_mask is not None: # no matter the length, we just slice it | |
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] | |
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, | |
# Reference: https://github.com/pytorch/pytorch/issues/112577. | |
if query_states.device.type == "cuda" and attention_mask is not None: | |
query_states = query_states.contiguous() | |
key_states = key_states.contiguous() | |
value_states = value_states.contiguous() | |
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment | |
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. | |
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1. | |
is_causal = True if causal_mask is None and q_len > 1 else False | |
attn_output = torch.nn.functional.scaled_dot_product_attention( | |
query_states, | |
key_states, | |
value_states, | |
attn_mask=causal_mask, | |
dropout_p=self.attention_dropout if self.training else 0.0, | |
is_causal=is_causal, | |
) | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
attn_output = attn_output.view(bsz, q_len, self.hidden_size) | |
attn_output = self.o_proj(attn_output) | |
return attn_output, None, past_key_value | |
QWEN2MOE_ATTENTION_CLASSES = { | |
"eager": Qwen2MoeAttention, | |
"flash_attention_2": Qwen2MoeFlashAttention2, | |
"sdpa": Qwen2MoeSdpaAttention, | |
} | |
class Qwen2MoeSparseMoeBlock(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.num_experts = config.num_experts | |
self.top_k = config.num_experts_per_tok | |
self.norm_topk_prob = config.norm_topk_prob | |
# gating | |
self.gate = nn.Linear(config.hidden_size, config.num_experts, bias=False) | |
self.experts = nn.ModuleList( | |
[Qwen2MoeMLP(config, intermediate_size=config.moe_intermediate_size) for _ in range(self.num_experts)] | |
) | |
#share | |
self.share_flag=config.share_flag | |
if self.share_flag: | |
self.shared_expert = Qwen2MoeMLP(config, intermediate_size=config.shared_expert_intermediate_size) | |
self.shared_expert_gate = torch.nn.Linear(config.hidden_size, 1, bias=False) | |
#language-specific | |
self.language_gate=config.language_gate | |
def forward(self, hidden_states: torch.Tensor,language_ids:Optional[torch.LongTensor] = None) -> torch.Tensor: | |
batch_size, sequence_length, hidden_dim = hidden_states.shape | |
hidden_states = hidden_states.view(-1, hidden_dim) | |
if self.language_gate and self.training : | |
if language_ids is None: | |
raise ValueError('language_ids is not initialized') | |
language_ids=language_ids.view(batch_size*sequence_length,-1) | |
# router_logits: (batch * sequence_length, n_experts) | |
router_logits = self.gate(hidden_states) | |
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) | |
_, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1) | |
#language specific select one expert | |
if self.language_gate and self.training: | |
if language_ids is None: | |
raise ValueError('language_ids is not initialized') | |
assert language_ids.shape[0]==selected_experts.shape[0],f'{language_ids.shape},{selected_experts.shape}' | |
language_experts=language_ids.to(selected_experts.dtype) | |
mask=torch.sum((language_experts==selected_experts).int(),dim=1,keepdims=True).bool() | |
selected_experts[:,-1]=torch.where(mask.squeeze(),selected_experts[:,-1],language_experts.squeeze()) | |
routing_weights=torch.gather(routing_weights,1,selected_experts) | |
else: | |
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1) | |
if self.norm_topk_prob: | |
routing_weights /= routing_weights.sum(dim=-1, keepdim=True) | |
# we cast back to the input dtype | |
routing_weights = routing_weights.to(hidden_states.dtype) | |
final_hidden_states = torch.zeros( | |
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device | |
) | |
# One hot encode the selected experts to create an expert mask | |
# this will be used to easily index which expert is going to be sollicitated | |
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0) | |
# Loop over all available experts in the model and perform the computation on each expert | |
for expert_idx in range(self.num_experts): | |
expert_layer = self.experts[expert_idx] | |
idx, top_x = torch.where(expert_mask[expert_idx]) | |
# Index the correct hidden states and compute the expert hidden state for | |
# the current expert. We need to make sure to multiply the output hidden | |
# states by `routing_weights` on the corresponding tokens (top-1 and top-2) | |
current_state = hidden_states[None, top_x].reshape(-1, hidden_dim) | |
current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None] | |
# However `index_add_` only support torch tensors for indexing so we'll use | |
# the `top_x` tensor here. | |
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype)) | |
if self.share_flag: | |
shared_expert_output = self.shared_expert(hidden_states) | |
shared_expert_output = F.sigmoid(self.shared_expert_gate(hidden_states)) * shared_expert_output | |
final_hidden_states = final_hidden_states + shared_expert_output | |
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim) | |
return final_hidden_states, router_logits | |
class Qwen2MoeDecoderLayer(nn.Module): | |
def __init__(self, config: UpcyclingQwen2MoeConfig, layer_idx: int): | |
super().__init__() | |
self.hidden_size = config.hidden_size | |
self.self_attn = QWEN2MOE_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) | |
if (layer_idx not in config.mlp_only_layers) and ( | |
config.num_experts > 0 and (layer_idx + 1) % config.decoder_sparse_step == 0 | |
): | |
self.mlp = Qwen2MoeSparseMoeBlock(config) | |
else: | |
self.mlp = Qwen2MoeMLP(config, intermediate_size=config.intermediate_size) | |
self.input_layernorm = Qwen2MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
self.post_attention_layernorm = Qwen2MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
language_ids:Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
output_attentions: Optional[bool] = False, | |
output_router_logits: Optional[bool] = False, | |
use_cache: Optional[bool] = False, | |
cache_position: Optional[torch.LongTensor] = None, | |
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | |
""" | |
Args: | |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size | |
`(batch, sequence_length)` where padding elements are indicated by 0. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
output_router_logits (`bool`, *optional*): | |
Whether or not to return the logits of all the routers. They are useful for computing the router loss, | |
and should not be returned during inference. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | |
(see `past_key_values`). | |
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | |
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): | |
Indices depicting the position of the input sequence tokens in the sequence. | |
""" | |
residual = hidden_states | |
hidden_states = self.input_layernorm(hidden_states) | |
# Self Attention | |
hidden_states, self_attn_weights, present_key_value = self.self_attn( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
cache_position=cache_position, | |
) | |
hidden_states = residual + hidden_states | |
# Fully Connected | |
residual = hidden_states | |
hidden_states = self.post_attention_layernorm(hidden_states) | |
hidden_states = self.mlp(hidden_states,language_ids) | |
if isinstance(hidden_states, tuple): | |
hidden_states, router_logits = hidden_states | |
else: | |
router_logits = None | |
hidden_states = residual + hidden_states | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (self_attn_weights,) | |
if use_cache: | |
outputs += (present_key_value,) | |
if output_router_logits: | |
outputs += (router_logits,) | |
return outputs | |
class UpcyclingQwen2MoePreTrainedModel(PreTrainedModel): | |
config_class = UpcyclingQwen2MoeConfig | |
base_model_prefix = "model" | |
supports_gradient_checkpointing = True | |
_no_split_modules = ["Qwen2MoeDecoderLayer"] | |
_skip_keys_device_placement = "past_key_values" | |
_supports_flash_attn_2 = True | |
_supports_sdpa = True | |
_supports_cache_class = True | |
def _init_weights(self, module): | |
std = self.config.initializer_range | |
if isinstance(module, nn.Linear): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
def from_qwen(cls, pretrained_model_name_or_path, *model_args, **kwargs): | |
share_flag=kwargs.pop('share_flag') | |
attn_init_change=kwargs.pop('attn_init_change') | |
language_gate=kwargs.pop('language_gate') | |
config = cls.config_class.from_pretrained(pretrained_model_name_or_path) | |
config.share_flag=True if isinstance(share_flag,bool) and share_flag else False | |
config.attn_init_change=True if isinstance(attn_init_change,bool) and attn_init_change else False | |
config.language_gate=True if isinstance(language_gate,bool) and language_gate else False | |
print('share_flag',config.share_flag) | |
print('attn_init_change',config.attn_init_change) | |
print('language_gate',config.language_gate) | |
config.num_experts_per_tok = config.num_experts_per_tok if not config.share_flag else config.num_experts_per_tok-1 | |
config.num_experts = config.num_experts if not config.share_flag else config.num_experts-1 | |
base_model = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) | |
base_cls = type(base_model) | |
print(cls.config_class,cls) | |
#create auto_map | |
#allows you to use your custom model with the auto-API (but doesn’t share any custom code with other users). | |
cls.config_class.register_for_auto_class() | |
cls.register_for_auto_class('AutoModelForCausalLM') | |
# assert base_cls.__name__ == "Qwen2ForCausalLM", f"Invalid convert base model type: {base_cls}" | |
model = cls(config) | |
print(f"converting {base_cls.__name__} to {cls.__name__}") | |
#MoE architechture | |
model_dict=model.state_dict() | |
base_model_dict = base_model.state_dict() | |
#lm_head | |
print('lm_head.weight',model_dict['lm_head.weight'],base_model_dict['lm_head.weight']) | |
shared_keys=set(model_dict)&set(base_model_dict) | |
init_keys=[] | |
#attention | |
for k in shared_keys: | |
if k not in init_keys and 'self_attn' in k: | |
init_keys.append(k) | |
if not config.attn_init_change: | |
model_dict[k]=base_model_dict[k] | |
if config.attn_init_change: | |
#initilization with upper and lower | |
for layer_id in range(config.num_hidden_layers): | |
if layer_id ==0 or config.num_hidden_layers-1: | |
model_dict[f'model.layers.{layer_id}.self_attn.q_proj.bias']=base_model_dict[f'model.layers.{layer_id}.self_attn.q_proj.bias'] | |
model_dict[f'model.layers.{layer_id}.self_attn.q_proj.weight']=base_model_dict[f'model.layers.{layer_id}.self_attn.q_proj.weight'] | |
model_dict[f'model.layers.{layer_id}.self_attn.k_proj.bias']=base_model_dict[f'model.layers.{layer_id}.self_attn.k_proj.bias'] | |
model_dict[f'model.layers.{layer_id}.self_attn.k_proj.weight']=base_model_dict[f'model.layers.{layer_id}.self_attn.k_proj.weight'] | |
model_dict[f'model.layers.{layer_id}.self_attn.v_proj.bias']=base_model_dict[f'model.layers.{layer_id}.self_attn.v_proj.bias'] | |
model_dict[f'model.layers.{layer_id}.self_attn.v_proj.weight']=base_model_dict[f'model.layers.{layer_id}.self_attn.v_proj.weight'] | |
model_dict[f'model.layers.{layer_id}.self_attn.o_proj.weight']=base_model_dict[f'model.layers.{layer_id}.self_attn.o_proj.weight'] | |
else: | |
model_dict[f'model.layers.{layer_id}.self_attn.q_proj.bias']=1/3*(base_model_dict[f'model.layers.{layer_id}.self_attn.q_proj.bias']+base_model_dict[f'model.layers.{layer_id+1}.self_attn.q_proj.bias']+base_model_dict[f'model.layers.{layer_id-1}.self_attn.q_proj.bias']) | |
model_dict[f'model.layers.{layer_id}.self_attn.q_proj.weight']=1/3*(base_model_dict[f'model.layers.{layer_id}.self_attn.q_proj.weight']+base_model_dict[f'model.layers.{layer_id+1}.self_attn.q_proj.weight']+base_model_dict[f'model.layers.{layer_id-1}.self_attn.q_proj.weight']) | |
model_dict[f'model.layers.{layer_id}.self_attn.k_proj.bias']=1/3*(base_model_dict[f'model.layers.{layer_id}.self_attn.k_proj.bias']+base_model_dict[f'model.layers.{layer_id+1}.self_attn.k_proj.bias']+base_model_dict[f'model.layers.{layer_id-1}.self_attn.k_proj.bias']) | |
model_dict[f'model.layers.{layer_id}.self_attn.k_proj.weight']=1/3*(base_model_dict[f'model.layers.{layer_id}.self_attn.k_proj.weight']+base_model_dict[f'model.layers.{layer_id+1}.self_attn.k_proj.weight']+base_model_dict[f'model.layers.{layer_id-1}.self_attn.k_proj.weight']) | |
model_dict[f'model.layers.{layer_id}.self_attn.v_proj.bias']=1/3*(base_model_dict[f'model.layers.{layer_id}.self_attn.v_proj.bias']+base_model_dict[f'model.layers.{layer_id+1}.self_attn.v_proj.bias']+base_model_dict[f'model.layers.{layer_id-1}.self_attn.v_proj.bias']) | |
model_dict[f'model.layers.{layer_id}.self_attn.v_proj.weight']=1/3*(base_model_dict[f'model.layers.{layer_id}.self_attn.v_proj.weight']+base_model_dict[f'model.layers.{layer_id+1}.self_attn.v_proj.weight']+base_model_dict[f'model.layers.{layer_id-1}.self_attn.v_proj.weight']) | |
model_dict[f'model.layers.{layer_id}.self_attn.o_proj.weight']=1/3*(base_model_dict[f'model.layers.{layer_id}.self_attn.o_proj.weight']+base_model_dict[f'model.layers.{layer_id+1}.self_attn.o_proj.weight']+base_model_dict[f'model.layers.{layer_id-1}.self_attn.o_proj.weight']) | |
#mlp | |
if config.mlp_only_layers: | |
for layer_id in config.mlp_only_layers: | |
key_mapping=sum([ | |
[ | |
(f'model.layers.{layer_id}.mlp.down_proj.weight',f'model.layers.{layer_id}.mlp.down_proj.weight'), | |
(f'model.layers.{layer_id}.mlp.gate_proj.weight',f'model.layers.{layer_id}.mlp.gate_proj.weight'), | |
(f'model.layers.{layer_id}.mlp.up_proj.weight',f'model.layers.{layer_id}.mlp.up_proj.weight'), | |
]] | |
,[]) | |
for model_key,base_model_key in key_mapping: | |
model_dict[model_key]=base_model_dict[base_model_key] | |
init_keys.append(model_key) | |
moe_only_layers=list(set(range(config.num_hidden_layers))-set(config.mlp_only_layers)) if config.mlp_only_layers else config.num_hidden_layers | |
#moe-mlp-expert | |
for layer_id in moe_only_layers: | |
key_mapping=sum([ | |
[ | |
(f'model.layers.{layer_id}.mlp.experts.{expert_id}.down_proj.weight',f'model.layers.{layer_id}.mlp.down_proj.weight'), | |
(f'model.layers.{layer_id}.mlp.experts.{expert_id}.gate_proj.weight',f'model.layers.{layer_id}.mlp.gate_proj.weight'), | |
(f'model.layers.{layer_id}.mlp.experts.{expert_id}.up_proj.weight',f'model.layers.{layer_id}.mlp.up_proj.weight'), | |
] for expert_id in range(config.num_experts)] | |
,[]) | |
for model_key,base_model_key in key_mapping: | |
model_dict[model_key]=base_model_dict[base_model_key] | |
init_keys.append(model_key) | |
#model_dict[f'model.layers.{layer_id}.mlp.gate.weight'] | |
#share expert | |
if config.share_flag: | |
shared_key_mapping=sum([[ | |
(f'model.layers.{layer_id}.mlp.shared_expert.down_proj.weight',f'model.layers.{layer_id}.mlp.down_proj.weight'), | |
(f'model.layers.{layer_id}.mlp.shared_expert.gate_proj.weight',f'model.layers.{layer_id}.mlp.gate_proj.weight'), | |
(f'model.layers.{layer_id}.mlp.shared_expert.up_proj.weight',f'model.layers.{layer_id}.mlp.up_proj.weight'), | |
]for layer_id in range(config.num_hidden_layers)], | |
[]) | |
for model_key,base_model_key in shared_key_mapping: | |
model_dict[model_key]=base_model_dict[base_model_key] | |
init_keys.append(model_key) | |
# model_dict[f'model.layers.{layer_id}.mlp.shared_expert_gate.weight'] | |
#norm | |
for k in shared_keys: | |
if k not in init_keys: | |
#input_layernorm.weight,post_attention_layernorm.weight,norm.weight | |
# embed_token.weight,lm_head.weight | |
model_dict[k]=base_model_dict[k] | |
init_keys.append(k) | |
gate_initialized = False | |
shared_gate_initilizaed=False | |
for key in model_dict.keys(): | |
if key in init_keys: | |
continue | |
if "mlp.gate.weight" in key: | |
if gate_initialized: | |
continue | |
gate_initialized = True | |
print(f"{cls.__name__} key [{cls.base_model_prefix}.layers.[0-{config.num_hidden_layers-1}].mlp.gate.weight] is not initialized from {base_cls.__name__}. e.g, {key}") | |
continue | |
if 'shared_expert_gate.weight' in key: | |
if shared_gate_initilizaed: | |
continue | |
shared_gate_initilizaed = True | |
print(f"{cls.__name__} key [{cls.base_model_prefix}.layers.[0-{config.num_hidden_layers-1}].mlp.shared_expert_gate.weight] is not initialized from {base_cls.__name__}. e.g, {key}") | |
continue | |
raise NotImplementedError(f"{cls.__name__} key [{key}] is not correctly initilized from {base_cls.__name__}.") | |
model.load_state_dict(model_dict) | |
print(f"Done converted, alreadly check all parameters of {cls.__name__} are initialized from {base_cls.__name__}.") | |
del base_model | |
return model | |
def from_btx(cls, pretrained_model_name_or_path, *model_args, **kwargs): | |
share_flag=kwargs.pop('share_flag') | |
attn_init_change=kwargs.pop('attn_init_change') | |
language_gate=kwargs.pop('language_gate') | |
config = cls.config_class.from_pretrained(pretrained_model_name_or_path) | |
config.share_flag=True if isinstance(share_flag,bool) and share_flag else False | |
config.attn_init_change=True if isinstance(attn_init_change,bool) and attn_init_change else False | |
config.language_gate=True if isinstance(language_gate,bool) and language_gate else False | |
print('share_flag',config.share_flag) | |
print('attn_init_change',config.attn_init_change) | |
print('language_gate',config.language_gate) | |
config.num_experts_per_tok = config.num_experts_per_tok if not config.share_flag else config.num_experts_per_tok-1 | |
config.num_experts = config.num_experts if not config.share_flag else config.num_experts-1 | |
base_model = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) | |
base_cls = type(base_model) | |
print(cls.config_class,cls) | |
#create auto_map | |
#allows you to use your custom model with the auto-API (but doesn’t share any custom code with other users). | |
cls.config_class.register_for_auto_class() | |
cls.register_for_auto_class('AutoModelForCausalLM') | |
# assert base_cls.__name__ == "Qwen2ForCausalLM", f"Invalid convert base model type: {base_cls}" | |
model = cls(config) | |
print(f"converting {base_cls.__name__} to {cls.__name__}") | |
#MoE architechture | |
model_dict=model.state_dict() | |
base_model_dict = base_model.state_dict() | |
#lm_head | |
print('lm_head.weight',model_dict['lm_head.weight'],base_model_dict['lm_head.weight']) | |
shared_keys=set(model_dict)&set(base_model_dict) | |
init_keys=[] | |
#attention | |
for k in shared_keys: | |
init_keys.append(k) | |
model_dict[k]=base_model_dict[k] | |
gate_initialized = False | |
shared_gate_initilizaed=False | |
for key in model_dict.keys(): | |
if key in init_keys: | |
continue | |
if "mlp.gate.weight" in key: | |
if gate_initialized: | |
continue | |
gate_initialized = True | |
print(f"{cls.__name__} key [{cls.base_model_prefix}.layers.[0-{config.num_hidden_layers-1}].mlp.gate.weight] is not initialized from {base_cls.__name__}. e.g, {key}") | |
continue | |
if 'shared_expert_gate.weight' in key: | |
if shared_gate_initilizaed: | |
continue | |
shared_gate_initilizaed = True | |
print(f"{cls.__name__} key [{cls.base_model_prefix}.layers.[0-{config.num_hidden_layers-1}].mlp.shared_expert_gate.weight] is not initialized from {base_cls.__name__}. e.g, {key}") | |
continue | |
raise NotImplementedError(f"{cls.__name__} key [{key}] is not correctly initilized from {base_cls.__name__}.") | |
model.load_state_dict(model_dict) | |
print(f"Done converted, alreadly check all parameters of {cls.__name__} are initialized from {base_cls.__name__}.") | |
del base_model | |
return model | |
class UpcyclingQwen2MoeModel(UpcyclingQwen2MoePreTrainedModel): | |
""" | |
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2MoeDecoderLayer`] | |
Args: | |
config: Qwen2MoeConfig | |
""" | |
def __init__(self, config: UpcyclingQwen2MoeConfig): | |
super().__init__(config) | |
self.padding_idx = config.pad_token_id | |
self.vocab_size = config.vocab_size | |
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) | |
self.layers = nn.ModuleList( | |
[Qwen2MoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] | |
) | |
self._attn_implementation = config._attn_implementation | |
self.norm = Qwen2MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
self.gradient_checkpointing = False | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.embed_tokens | |
def set_input_embeddings(self, value): | |
self.embed_tokens = value | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
language_ids :Optional[torch.LongTensor]= None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
output_router_logits: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
cache_position: Optional[torch.LongTensor] = None, | |
) -> Union[Tuple, MoeModelOutputWithPast]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_router_logits = ( | |
output_router_logits if output_router_logits is not None else self.config.output_router_logits | |
) | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if (input_ids is None) ^ (inputs_embeds is not None): | |
raise ValueError( | |
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" | |
) | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning_once( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
) | |
use_cache = False | |
use_legacy_cache = False | |
if use_cache and not isinstance(past_key_values, Cache): | |
use_legacy_cache = True | |
past_key_values = DynamicCache.from_legacy_cache(past_key_values) | |
logger.warning_once( | |
"We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. " | |
"Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)" | |
) | |
if inputs_embeds is None: | |
inputs_embeds = self.embed_tokens(input_ids) | |
if cache_position is None: | |
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 | |
cache_position = torch.arange( | |
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device | |
) | |
if position_ids is None: | |
position_ids = cache_position.unsqueeze(0) | |
causal_mask = self._update_causal_mask( | |
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions | |
) | |
hidden_states = inputs_embeds | |
# decoder layers | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attns = () if output_attentions else None | |
all_router_logits = () if output_router_logits else None | |
next_decoder_cache = None | |
for decoder_layer in self.layers: | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
decoder_layer.__call__, | |
hidden_states, | |
language_ids, | |
causal_mask, | |
position_ids, | |
past_key_values, | |
output_attentions, | |
output_router_logits, | |
use_cache, | |
cache_position, | |
) | |
else: | |
layer_outputs = decoder_layer( | |
hidden_states, | |
language_ids, | |
attention_mask=causal_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_values, | |
output_attentions=output_attentions, | |
output_router_logits=output_router_logits, | |
use_cache=use_cache, | |
cache_position=cache_position, | |
) | |
hidden_states = layer_outputs[0] | |
if use_cache: | |
next_decoder_cache = layer_outputs[2 if output_attentions else 1] | |
if output_attentions: | |
all_self_attns += (layer_outputs[1],) | |
if output_router_logits and layer_outputs[-1] is not None: | |
all_router_logits += (layer_outputs[-1],) | |
hidden_states = self.norm(hidden_states) | |
# add hidden states from the last decoder layer | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
next_cache = None | |
if use_cache: | |
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache | |
if not return_dict: | |
return tuple( | |
v | |
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits] | |
if v is not None | |
) | |
return MoeModelOutputWithPast( | |
last_hidden_state=hidden_states, | |
past_key_values=next_cache, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attns, | |
router_logits=all_router_logits, | |
) | |
# Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask | |
def _update_causal_mask( | |
self, | |
attention_mask: torch.Tensor, | |
input_tensor: torch.Tensor, | |
cache_position: torch.Tensor, | |
past_key_values: Cache, | |
output_attentions: bool, | |
): | |
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static | |
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes. | |
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using | |
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114 | |
if self.config._attn_implementation == "flash_attention_2": | |
if attention_mask is not None and 0.0 in attention_mask: | |
return attention_mask | |
return None | |
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in | |
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail | |
# to infer the attention mask. | |
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 | |
using_static_cache = isinstance(past_key_values, StaticCache) | |
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward | |
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions: | |
if AttentionMaskConverter._ignore_causal_mask_sdpa( | |
attention_mask, | |
inputs_embeds=input_tensor, | |
past_key_values_length=past_seen_tokens, | |
is_training=self.training, | |
): | |
return None | |
dtype, device = input_tensor.dtype, input_tensor.device | |
min_dtype = torch.finfo(dtype).min | |
sequence_length = input_tensor.shape[1] | |
if using_static_cache: | |
target_length = past_key_values.get_max_length() | |
else: | |
target_length = ( | |
attention_mask.shape[-1] | |
if isinstance(attention_mask, torch.Tensor) | |
else past_seen_tokens + sequence_length + 1 | |
) | |
if attention_mask is not None and attention_mask.dim() == 4: | |
# in this case we assume that the mask comes already in inverted form and requires no inversion or slicing | |
if attention_mask.max() != 0: | |
raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`") | |
causal_mask = attention_mask | |
else: | |
causal_mask = torch.full( | |
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device | |
) | |
if sequence_length != 1: | |
causal_mask = torch.triu(causal_mask, diagonal=1) | |
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) | |
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1) | |
if attention_mask is not None: | |
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit | |
mask_length = attention_mask.shape[-1] | |
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] | |
padding_mask = padding_mask == 0 | |
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( | |
padding_mask, min_dtype | |
) | |
if ( | |
self.config._attn_implementation == "sdpa" | |
and attention_mask is not None | |
and attention_mask.device.type == "cuda" | |
and not output_attentions | |
): | |
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when | |
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. | |
# Details: https://github.com/pytorch/pytorch/issues/110213 | |
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) | |
return causal_mask | |
class UpcyclingQwen2MoeForCausalLM(UpcyclingQwen2MoePreTrainedModel): | |
_tied_weights_keys = ["lm_head.weight"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.model = UpcyclingQwen2MoeModel(config) | |
self.vocab_size = config.vocab_size | |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
self.router_aux_loss_coef = config.router_aux_loss_coef | |
self.num_experts = config.num_experts | |
self.num_experts_per_tok = config.num_experts_per_tok | |
self.language_gate=config.language_gate | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.model.embed_tokens | |
def set_input_embeddings(self, value): | |
self.model.embed_tokens = value | |
def get_output_embeddings(self): | |
return self.lm_head | |
def set_output_embeddings(self, new_embeddings): | |
self.lm_head = new_embeddings | |
def set_decoder(self, decoder): | |
self.model = decoder | |
def get_decoder(self): | |
return self.model | |
# @replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
language_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
output_router_logits: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
cache_position: Optional[torch.LongTensor] = None, | |
) -> Union[Tuple, MoeCausalLMOutputWithPast]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_router_logits = ( | |
output_router_logits if output_router_logits is not None else self.config.output_router_logits | |
) | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) | |
outputs = self.model( | |
input_ids=input_ids, | |
language_ids=language_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
output_router_logits=output_router_logits, | |
return_dict=return_dict, | |
cache_position=cache_position, | |
) | |
hidden_states = outputs[0] | |
logits = self.lm_head(hidden_states) | |
logits = logits.float() | |
loss = None | |
if labels is not None: | |
# Shift so that tokens < n predict n | |
shift_logits = logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
# Flatten the tokens | |
loss_fct = CrossEntropyLoss() | |
shift_logits = shift_logits.view(-1, self.config.vocab_size) | |
shift_labels = shift_labels.view(-1) | |
# Enable model parallelism | |
shift_labels = shift_labels.to(shift_logits.device) | |
loss = loss_fct(shift_logits, shift_labels) | |
aux_loss = None | |
if output_router_logits: | |
aux_loss = load_balancing_loss_func( | |
outputs.router_logits if return_dict else outputs[-1], | |
self.num_experts, | |
self.num_experts_per_tok, | |
attention_mask, | |
) | |
if labels is not None: | |
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
if output_router_logits: | |
output = (aux_loss,) + output | |
return (loss,) + output if loss is not None else output | |
return MoeCausalLMOutputWithPast( | |
loss=loss, | |
aux_loss=aux_loss, | |
logits=logits, | |
past_key_values=outputs.past_key_values, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
router_logits=outputs.router_logits, | |
) | |
def prepare_inputs_for_generation( | |
self, | |
input_ids, | |
past_key_values=None, | |
attention_mask=None, | |
inputs_embeds=None, | |
cache_position=None, | |
use_cache=True, | |
**kwargs, | |
): | |
past_length = 0 | |
# ##### by own | |
if past_key_values is not None: | |
if isinstance(past_key_values,Cache): | |
# Past key values are always initialized with a `Cache` object -> no need for if-else anymore | |
past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length() | |
max_cache_length = ( | |
torch.tensor(past_key_values.get_max_length(), device=input_ids.device) | |
if past_key_values.get_max_length() is not None | |
else None | |
) | |
cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length) | |
else: | |
cache_length=past_length=past_key_values[0][0].shape[2] | |
max_cache_length=None | |
# # ##### | |
# Omit tokens covered by past_key_values | |
# if past_key_values is not None: | |
# # Past key values are always initialized with a `Cache` object -> no need for if-else anymore | |
# past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length() | |
# max_cache_length = ( | |
# torch.tensor(past_key_values.get_max_length(), device=input_ids.device) | |
# if past_key_values.get_max_length() is not None | |
# else None | |
# ) | |
# cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length) | |
# Keep only the unprocessed tokens: | |
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where | |
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as | |
# input) | |
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: | |
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] | |
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard | |
# input_ids based on the past_length. | |
elif past_length < input_ids.shape[1]: | |
input_ids = input_ids[:, past_length:] | |
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. | |
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask. | |
if ( | |
max_cache_length is not None | |
and attention_mask is not None | |
and cache_length + input_ids.shape[1] > max_cache_length | |
): | |
attention_mask = attention_mask[:, -max_cache_length:] | |
position_ids = kwargs.get("position_ids", None) | |
if attention_mask is not None and position_ids is None: | |
# create position_ids on the fly for batch generation | |
position_ids = attention_mask.long().cumsum(-1) - 1 | |
position_ids.masked_fill_(attention_mask == 0, 1) | |
if past_key_values: | |
position_ids = position_ids[:, -input_ids.shape[1] :] | |
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step | |
if inputs_embeds is not None and past_length == 0: | |
model_inputs = {"inputs_embeds": inputs_embeds} | |
else: | |
model_inputs = {"input_ids": input_ids} | |
input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1] | |
if cache_position is None: | |
cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device) | |
elif use_cache: | |
cache_position = cache_position[-input_length:] | |
model_inputs.update( | |
{ | |
"position_ids": position_ids, | |
"past_key_values": past_key_values, | |
"use_cache": use_cache, | |
"attention_mask": attention_mask, | |
"cache_position": cache_position, | |
} | |
) | |
return model_inputs | |
def _reorder_cache(past_key_values, beam_idx): | |
reordered_past = () | |
for layer_past in past_key_values: | |
reordered_past += ( | |
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), | |
) | |
return reordered_past | |