nuojohnchen's picture
Update app.py
b8ae285 verified
raw
history blame
13.6 kB
import gradio as gr
import os
import spaces
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
from threading import Thread
import torch
import time
# Set environment variables
HF_TOKEN = os.environ.get("HF_TOKEN", None)
# Apollo system prompt
SYSTEM_PROMPT = "You are Apollo, a multilingual medical model. You communicate with people and assist them."
LICENSE = """
<div style="font-family: monospace; white-space: pre; margin-top: 20px; line-height: 1.2;">
@misc{wang2024apollo,
title={Apollo: Lightweight Multilingual Medical LLMs towards Democratizing Medical AI to 6B People},
author={Xidong Wang and Nuo Chen and Junyin Chen and Yan Hu and Yidong Wang and Xiangbo Wu and Anningzhe Gao and Xiang Wan and Haizhou Li and Benyou Wang},
year={2024},
eprint={2403.03640},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{zheng2024efficientlydemocratizingmedicalllms,
title={Efficiently Democratizing Medical LLMs for 50 Languages via a Mixture of Language Family Experts},
author={Guorui Zheng and Xidong Wang and Juhao Liang and Nuo Chen and Yuping Zheng and Benyou Wang},
year={2024},
eprint={2410.10626},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2410.10626},
}
</div>
"""
# Apollo model options
APOLLO_MODELS = {
"Apollo": [
"FreedomIntelligence/Apollo-7B",
"FreedomIntelligence/Apollo-6B",
"FreedomIntelligence/Apollo-2B",
"FreedomIntelligence/Apollo-0.5B",
],
"Apollo2": [
"FreedomIntelligence/Apollo2-7B",
"FreedomIntelligence/Apollo2-3.8B",
"FreedomIntelligence/Apollo2-2B",
],
"Apollo-MoE": [
"FreedomIntelligence/Apollo-MoE-7B",
"FreedomIntelligence/Apollo-MoE-1.5B",
"FreedomIntelligence/Apollo-MoE-0.5B",
]
}
# CSS styles
css = """
h1 {
text-align: center;
display: block;
}
.gradio-container {
max-width: 1200px;
margin: auto;
}
"""
# Global variables to store currently loaded model and tokenizer
current_model = None
current_tokenizer = None
current_model_path = None
@spaces.GPU(duration=120)
def load_model(model_path, progress=gr.Progress()):
"""Load the selected model and tokenizer"""
global current_model, current_tokenizer, current_model_path
# If the same model is already loaded, don't reload it
if current_model_path == model_path and current_model is not None:
return "Model already loaded, no need to reload."
# Clean up previously loaded model (if any)
if current_model is not None:
del current_model
del current_tokenizer
torch.cuda.empty_cache()
progress(0.1, desc=f"Starting to load model {model_path}...")
try:
progress(0.3, desc="Loading tokenizer...")
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
current_tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False,trust_remote_code=True)
progress(0.5, desc="Loading model...")
current_model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
torch_dtype=torch.float16,
config=config,
trust_remote_code=True
)
current_model_path = model_path
progress(1.0, desc="Model loading complete!")
return f"Model {model_path} successfully loaded."
except Exception as e:
progress(1.0, desc="Model loading failed!")
return f"Model loading failed: {str(e)}"
@spaces.GPU(duration=120)
def generate_response_non_streaming(instruction, model_name, temperature=0.7, max_tokens=1024):
"""Generate a response from the Apollo model (non-streaming)"""
global current_model, current_tokenizer, current_model_path
print("instruction:",instruction)
# If model is not yet loaded, load it first
if current_model_path != model_name or current_model is None:
load_message = load_model(model_name)
if "failed" in load_message.lower():
return load_message
try:
# 直接使用简单的提示格式,不使用模型的聊天模板
prompt = f"User:{instruction}\nAssistant:"
print("prompt:",prompt)
chat_input = current_tokenizer.encode(prompt, return_tensors="pt").to(current_model.device)
# 生成响应
output = current_model.generate(
input_ids=chat_input,
max_new_tokens=max_tokens,
temperature=temperature,
do_sample=(temperature > 0),
eos_token_id=current_tokenizer.eos_token_id # 使用<|endoftext|>作为停止标记
)
# 解码并返回生成的文本
generated_text = current_tokenizer.decode(output[0][len(chat_input[0]):], skip_special_tokens=True)
print("generated_text:",generated_text)
return generated_text
except Exception as e:
return f"生成响应时出错: {str(e)}"
# try:
# # 检查模型是否有聊天模板
# if hasattr(current_tokenizer, 'chat_template') and current_tokenizer.chat_template:
# # 使用模型的聊天模板
# messages = [
# {"role": "system", "content": SYSTEM_PROMPT},
# {"role": "user", "content": instruction}
# ]
# # 使用模型的聊天模板格式化输入
# chat_input = current_tokenizer.apply_chat_template(
# messages,
# tokenize=True,
# return_tensors="pt"
# ).to(current_model.device)
# else:
# # 使用指定的提示格式
# prompt = f"User:{instruction}\nAssistant:"
# chat_input = current_tokenizer.encode(prompt, return_tensors="pt").to(current_model.device)
# # 获取<|endoftext|>的token id,用于停止生成
# eos_token_id = current_tokenizer.eos_token_id
# # 生成响应
# output = current_model.generate(
# input_ids=chat_input,
# max_new_tokens=max_tokens,
# temperature=temperature,
# do_sample=(temperature > 0),
# eos_token_id=current_tokenizer.eos_token_id # 使用<|endoftext|>作为停止标记
# )
# # 解码并返回生成的文本
# generated_text = current_tokenizer.decode(output[0][len(chat_input[0]):], skip_special_tokens=True)
# return generated_text
# except Exception as e:
# return f"生成响应时出错: {str(e)}"
def update_chat_with_response(chatbot, instruction, model_name, temperature, max_tokens):
"""Updates the chatbot with non-streaming response"""
global current_model, current_tokenizer, current_model_path
# If model is not yet loaded, load it first
if current_model_path != model_name or current_model is None:
load_result = load_model(model_name)
if "failed" in load_result.lower():
new_chat = list(chatbot)
new_chat[-1] = (instruction, load_result)
return new_chat
# Generate response using the non-streaming function
response = generate_response_non_streaming(instruction, model_name, temperature, max_tokens)
# Create a copy of the current chatbot and add the response
new_chat = list(chatbot)
new_chat[-1] = (instruction, response)
return new_chat
def on_model_series_change(model_series):
"""Update available model list based on selected model series"""
if model_series in APOLLO_MODELS:
return gr.update(choices=APOLLO_MODELS[model_series], value=APOLLO_MODELS[model_series][0])
return gr.update(choices=[], value=None)
# Create Gradio interface
with gr.Blocks(css=css) as demo:
# Title and description
favicon = "🩺"
gr.Markdown(
f"""# {favicon} Apollo Playground
This is a demo of the multilingual medical model series **[Apollo](https://huggingface.co/FreedomIntelligence/Apollo-7B-GGUF)**.
[Apollo1](https://arxiv.org/abs/2403.03640) supports 6 languages. [Apollo2](https://arxiv.org/abs/2410.10626) supports 50 languages.
"""
)
with gr.Row():
with gr.Column(scale=1):
# Model selection controls
model_series = gr.Dropdown(
choices=list(APOLLO_MODELS.keys()),
value="Apollo",
label="Select Model Series",
info="First choose Apollo, Apollo2 or Apollo-MoE"
)
model_name = gr.Dropdown(
choices=APOLLO_MODELS["Apollo"],
value=APOLLO_MODELS["Apollo"][0],
label="Select Model Size",
info="Select the specific model size based on the chosen model series"
)
# Parameter settings
with gr.Accordion("Generation Parameters", open=False):
temperature = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.7,
step=0.05,
label="Temperature"
)
max_tokens = gr.Slider(
minimum=128,
maximum=2048,
value=1024,
step=32,
label="Maximum Tokens"
)
# Load model button
load_button = gr.Button("Load Model")
model_status = gr.Textbox(label="Model Status", value="No model loaded yet")
with gr.Column(scale=2):
# Chat interface
chatbot = gr.Chatbot(label="Conversation", height=500, value=[]) # Initialize with empty list
user_input = gr.Textbox(
label="Input Medical Question",
placeholder="Example: What are the symptoms of hypertension? 高血压有哪些症状?",
lines=3
)
submit_button = gr.Button("Submit")
clear_button = gr.Button("Clear Chat")
# Event handling
# Update model selection when model series changes
model_series.change(
fn=on_model_series_change,
inputs=model_series,
outputs=model_name
)
# Load model
load_button.click(
fn=load_model,
inputs=model_name,
outputs=model_status
)
# Bind message submission
def process_message(message, chat_history):
"""Process user message and generate response"""
if message.strip() == "":
return "", chat_history
# Add user message to chat history
chat_history = list(chat_history)
chat_history.append((message, None))
# Generate response
response = generate_response_non_streaming(message, model_name.value, temperature.value, max_tokens.value)
# Add response to chat history
chat_history[-1] = (message, response)
return "", chat_history
submit_event = user_input.submit(
fn=process_message,
inputs=[user_input, chatbot],
outputs=[user_input, chatbot]
)
submit_button.click(
fn=process_message,
inputs=[user_input, chatbot],
outputs=[user_input, chatbot]
)
# Clear chat
clear_button.click(
fn=lambda: [],
outputs=chatbot
)
# # Handle message submission
# def user_message_submitted(message, chat_history):
# """Handle user submitted message"""
# # Ensure chat_history is a list
# if chat_history is None:
# chat_history = []
# if message.strip() == "":
# return "", chat_history
# # Add user message to chat history
# chat_history = list(chat_history)
# chat_history.append((message, None))
# return "", chat_history
# # Bind message submission
# submit_event = user_input.submit(
# fn=user_message_submitted,
# inputs=[user_input, chatbot],
# outputs=[user_input, chatbot]
# ).then(
# fn=update_chat_with_response,
# inputs=[chatbot, user_input, model_name, temperature, max_tokens],
# outputs=chatbot
# )
# submit_button.click(
# fn=user_message_submitted,
# inputs=[user_input, chatbot],
# outputs=[user_input, chatbot]
# ).then(
# fn=update_chat_with_response,
# inputs=[chatbot, user_input, model_name, temperature, max_tokens],
# outputs=chatbot
# )
# # Clear chat
# clear_button.click(
# fn=lambda: [],
# outputs=chatbot
# )
examples = [
["Últimamente tengo la tensión un poco alta, ¿cómo debo adaptar mis hábitos?"],
["What are the common side effects of metformin?"],
["中医和西医在治疗高血压方面有什么不同的观点?"],
["मेरा सिर दर्द कर रहा है, मुझे क्या करना चाहिए? "],
["Comment savoir si je suis diabétique ?"],
["ما الدواء الذي يمكنني تناوله إذا لم أستطع النوم ليلاً؟"]
]
gr.Examples(
examples=examples,
inputs=user_input
)
#gr.HTML(LICENSE)
if __name__ == "__main__":
demo.launch()