File size: 10,394 Bytes
ffce453
e77dcbd
 
 
 
 
 
ffce453
e77dcbd
 
ffce453
e77dcbd
 
ffce453
e77dcbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffce453
e77dcbd
 
 
 
 
 
 
 
 
 
 
ffce453
e77dcbd
 
 
 
ffce453
8521a9b
e77dcbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db48074
e77dcbd
 
 
 
 
db48074
 
e77dcbd
 
 
 
 
 
 
 
ffce453
8521a9b
e77dcbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffce453
e77dcbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffce453
e77dcbd
 
 
 
 
ffce453
e77dcbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffce453
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import gradio as gr
import os
import spaces
from transformers import AutoTokenizer, AutoModelForCausalLM
from threading import Thread
import torch
import time

# Set environment variables
HF_TOKEN = os.environ.get("HF_TOKEN", None)

# Apollo system prompt
SYSTEM_PROMPT = "You are Apollo, a multilingual medical model. You communicate with people and assist them."

# Apollo model options
APOLLO_MODELS = {
    "Apollo": [
        "FreedomIntelligence/Apollo-7B",
        "FreedomIntelligence/Apollo-6B",
        "FreedomIntelligence/Apollo-2B",
        "FreedomIntelligence/Apollo-0.5B",
        
    ],
    "Apollo2": [
        "FreedomIntelligence/Apollo2-7B",
        "FreedomIntelligence/Apollo2-3.8B",
        "FreedomIntelligence/Apollo2-2B",
    ],
    "Apollo-MoE": [
        "FreedomIntelligence/Apollo-MoE-7B",
        "FreedomIntelligence/Apollo-MoE-1.5B",
        "FreedomIntelligence/Apollo-MoE-0.5B",
        
    ]
}

# CSS styles
css = """
h1 {
  text-align: center;
  display: block;
}
.gradio-container {
  max-width: 1200px;
  margin: auto;
}
"""

# Global variables to store currently loaded model and tokenizer
current_model = None
current_tokenizer = None
current_model_path = None

@spaces.GPU(duration=120)
def load_model(model_path, progress=gr.Progress()):
    """Load the selected model and tokenizer"""
    global current_model, current_tokenizer, current_model_path
    
    # If the same model is already loaded, don't reload it
    if current_model_path == model_path and current_model is not None:
        return "Model already loaded, no need to reload."
    
    # Clean up previously loaded model (if any)
    if current_model is not None:
        del current_model
        del current_tokenizer
        torch.cuda.empty_cache()
    
    progress(0.1, desc=f"Starting to load model {model_path}...")
    
    try:
        progress(0.3, desc="Loading tokenizer...")
        current_tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False,trust_remote_code=True,)
        
        progress(0.5, desc="Loading model...")
        current_model = AutoModelForCausalLM.from_pretrained(
            model_path, 
            device_map="auto", 
            torch_dtype=torch.float16,
            trust_remote_code=True,
        )
        
        current_model_path = model_path
        progress(1.0, desc="Model loading complete!")
        return f"Model {model_path} successfully loaded."
    except Exception as e:
        progress(1.0, desc="Model loading failed!")
        return f"Model loading failed: {str(e)}"

@spaces.GPU(duration=120)
def generate_response_non_streaming(instruction, model_name, temperature=0.7, max_tokens=1024):
    """Generate a response from the Apollo model (non-streaming)"""
    global current_model, current_tokenizer, current_model_path
    
    # If model is not yet loaded, load it first
    if current_model_path != model_name or current_model is None:
        load_message = load_model(model_name)
        if "failed" in load_message.lower():
            return load_message
    
    try:
        # 检查模型是否有聊天模板
        if hasattr(current_tokenizer, 'chat_template') and current_tokenizer.chat_template:
            # 使用模型的聊天模板
            messages = [
                {"role": "system", "content": SYSTEM_PROMPT},
                {"role": "user", "content": instruction}
            ]
            
            # 使用模型的聊天模板格式化输入
            chat_input = current_tokenizer.apply_chat_template(
                messages, 
                tokenize=True, 
                return_tensors="pt"
            ).to(current_model.device)
        else:
            # 使用指定的提示格式
            prompt = f"User:{instruction}\nAssistant:"
            chat_input = current_tokenizer.encode(prompt, return_tensors="pt").to(current_model.device)
            
            # 获取<|endoftext|>的token id,用于停止生成
            eos_token_id = current_tokenizer.eos_token_id
        
        # 生成响应
        output = current_model.generate(
            input_ids=chat_input,
            max_new_tokens=max_tokens,
            temperature=temperature,
            do_sample=(temperature > 0),
            eos_token_id=current_tokenizer.eos_token_id  # 使用<|endoftext|>作为停止标记
        )
        
        # 解码并返回生成的文本
        generated_text = current_tokenizer.decode(output[0][len(chat_input[0]):], skip_special_tokens=True)
        return generated_text
    except Exception as e:
        return f"生成响应时出错: {str(e)}"

def update_chat_with_response(chatbot, instruction, model_name, temperature, max_tokens):
    """Updates the chatbot with non-streaming response"""
    global current_model, current_tokenizer, current_model_path
    
    # If model is not yet loaded, load it first
    if current_model_path != model_name or current_model is None:
        load_result = load_model(model_name)
        if "failed" in load_result.lower():
            new_chat = list(chatbot)
            new_chat[-1] = (instruction, load_result)
            return new_chat
    
    # Generate response using the non-streaming function
    response = generate_response_non_streaming(instruction, model_name, temperature, max_tokens)
    
    # Create a copy of the current chatbot and add the response
    new_chat = list(chatbot)
    new_chat[-1] = (instruction, response)
    
    return new_chat

def on_model_series_change(model_series):
    """Update available model list based on selected model series"""
    if model_series in APOLLO_MODELS:
        return gr.update(choices=APOLLO_MODELS[model_series], value=APOLLO_MODELS[model_series][0])
    return gr.update(choices=[], value=None)

# Create Gradio interface
with gr.Blocks(css=css) as demo:
    # Title and description
    favicon = "🩺"
    gr.Markdown(
        f"""# {favicon} Apollo Playground
        This is a demo of the multilingual medical model series **[Apollo](https://huggingface.co/FreedomIntelligence/Apollo-7B-GGUF)**.
        [Apollo1](https://arxiv.org/abs/2403.03640) supports 6 languages. [Apollo2](https://arxiv.org/abs/2410.10626) supports 50 languages.
        """
    )
    
    with gr.Row():
        with gr.Column(scale=1):
            # Model selection controls
            model_series = gr.Dropdown(
                choices=list(APOLLO_MODELS.keys()),
                value="Apollo",
                label="Select Model Series",
                info="First choose Apollo, Apollo2 or Apollo-MoE"
            )
            
            model_name = gr.Dropdown(
                choices=APOLLO_MODELS["Apollo"],
                value=APOLLO_MODELS["Apollo"][0],
                label="Select Model Size",
                info="Select the specific model size based on the chosen model series"
            )
            
            # Parameter settings
            with gr.Accordion("Generation Parameters", open=False):
                temperature = gr.Slider(
                    minimum=0.0, 
                    maximum=1.0, 
                    value=0.7, 
                    step=0.05, 
                    label="Temperature"
                )
                max_tokens = gr.Slider(
                    minimum=128, 
                    maximum=2048, 
                    value=1024, 
                    step=32, 
                    label="Maximum Tokens"
                )
            
            # Load model button
            load_button = gr.Button("Load Model")
            model_status = gr.Textbox(label="Model Status", value="No model loaded yet")
        
        with gr.Column(scale=2):
            # Chat interface
            chatbot = gr.Chatbot(label="Conversation", height=500, value=[])  # Initialize with empty list
            user_input = gr.Textbox(
                label="Input Medical Question",
                placeholder="Example: What are the symptoms of hypertension? 高血压有哪些症状?",
                lines=3
            )
            submit_button = gr.Button("Submit")
            clear_button = gr.Button("Clear Chat")
    
    # Event handling
    # Update model selection when model series changes
    model_series.change(
        fn=on_model_series_change,
        inputs=model_series,
        outputs=model_name
    )
    
    # Load model
    load_button.click(
        fn=load_model,
        inputs=model_name,
        outputs=model_status
    )
    
    # Handle message submission
    def user_message_submitted(message, chat_history):
        """Handle user submitted message"""
        # Ensure chat_history is a list
        if chat_history is None:
            chat_history = []
            
        if message.strip() == "":
            return "", chat_history
        
        # Add user message to chat history
        chat_history = list(chat_history)
        chat_history.append((message, None))
        return "", chat_history
    
    # Bind message submission
    submit_event = user_input.submit(
        fn=user_message_submitted,
        inputs=[user_input, chatbot],
        outputs=[user_input, chatbot]
    ).then(
        fn=update_chat_with_response,
        inputs=[chatbot, user_input, model_name, temperature, max_tokens],
        outputs=chatbot
    )
    
    submit_button.click(
        fn=user_message_submitted,
        inputs=[user_input, chatbot],
        outputs=[user_input, chatbot]
    ).then(
        fn=update_chat_with_response,
        inputs=[chatbot, user_input, model_name, temperature, max_tokens],
        outputs=chatbot
    )
    
    # Clear chat
    clear_button.click(
        fn=lambda: [],
        outputs=chatbot
    )
    
    examples = [
        ["Últimamente tengo la tensión un poco alta, ¿cómo debo adaptar mis hábitos?"],
        ["What are the common side effects of metformin?"],
        ["中医和西医在治疗高血压方面有什么不同的观点?"],
        ["मेरा सिर दर्द कर रहा है, मुझे क्या करना चाहिए? "],
        ["Comment savoir si je suis diabétique ?"],
        ["ما الدواء الذي يمكنني تناوله إذا لم أستطع النوم ليلاً؟"]
    ]
    gr.Examples(
        examples=examples,
        inputs=user_input
    )

if __name__ == "__main__":
    demo.launch()