chatstudent / app.py
nsultan5's picture
Update app.py
d2ae2fe verified
raw
history blame
4.61 kB
import openai
import gradio as gr
from langchain.chains import RetrievalQA
from langchain.llms import OpenAI
from langchain.document_loaders import PyPDFLoader
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from PyPDF2 import PdfReader
#Function to load and process the PDF document
def load_pdf(file):
#Load the PDF usign Langchain's PyPDFLoader
loader=PyPDFLoader(file.name)
documents=loader.load()
return documents
# Summarization function using GPT-4
def summarize_pdf(file,openai_api_key):
#set the openAI API key dynamically
openai.api_key="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"
# Load and process the PDF
documents=load_pdf(file)
# Create embeddings for the documents
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
# Use Langchain's FAISS Vector Store to store and search the embeddings
vector_store=FAISS.from_documents(documents,embeddings)
# Create a RetrievalQA chain for summarization
llm = ChatOpenAI(model='gpt-40', openai_api_key=openai_api_key) #passing api key here
qa_chain=RetrivalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=vector_store.as_retriever()
)
# Query the model for a summary of the document
response = qa_chain.run("Summarize the content of the research paper.")
return response
#Function to handle user queries and provide answers from the document
def query_pdf(file,user_query,openai_api_key):
#set the openai api key dynamically
openai.api_key=openai_api_key
#Load and process the PDF
documents = load_pdf(file)
# Create embeddings for the documents
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
# Use Langchain's FAISS vector store to store and search the embeddings
vector_store = FAISS.from_documents(documents, embeddings)
# Create a RetrievalQA chain for querying the document
llm=ChatOpenAI(model="gpt-40", openai_api_key=openai_api_key) #passing api key here
qa_chain=RetrivalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=vector_store.as_retriever()
)
# Query the model for the user query
response = qa_chain.run(user_query)
return response
# Define Gradio interface for the summarization
def create_gradio_interface():
with gr.Blocks() as demo:
gr.Markdown("### ChatPDF and Research Paper Summarizer using GPT-4 and Langchain ")
# Input field for API key
with gr.Row():
openai_api_key_input=gr.Textbox(label="Enter OpenAI API key",type ="password",placeholder="Enter your openai api key here")
with gr.Tab("Summarize PDF"):
with gr.Row():
pdf_file = gr.file(label="Upload PDF Document")
summarize_btn=gr.Button("Summarize")
summary_output=gr.Textbox(label="Summary",interactive=False)
clear_btn_summary=gr.Button("Clear Response")
#Summarize Button Logic
summarize_btn.click(summarize_pdf,inputs=[pdf_file,openai_api_key_input],outputs=summary_output)
# Clear response Button Logic for summary Tab
clear_btn_summary.click(lambda:"",inputs=[],outputs=summary_output)
with gr.Tab("Ask Questions"):
with gr.Row():
pdf_file_q = gr.File(label="Upload PDF Document")
user_input = gr.Textbox(label="Enter your question")
answer_output = gr.Textbox(label="Answer",interactive=False)
clear_btn_answer = gr.Button("clear Response")
# Submit Question Logic
user_input.submit(query_pdf,inputs=[pdf_file_q,user_input,openai_api_key_input],outputs=answer_output)
# Clear response button logic for anser tab
clear_btn_answer.click(lambda:"",inputs=[],outputs=answer_output)
user_input.submit(None,None,answer_output)
return demo
# Run Gradio app
if __name__=="__main__":
demo = create_gradio_interface()
demo.launch(debug=True)