File size: 90,758 Bytes
685ecb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
# cp from https://github.com/jasonppy/VoiceCraft/blob/master/models/voicecraft.py

import random

import numpy as np
import logging
import argparse, copy
from typing import Dict, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchmetrics.classification import MulticlassAccuracy

from .codebooks_patterns import DelayedPatternProvider

from ...utils.util import make_pad_mask

from .embedding import SinePositionalEmbedding, TokenEmbedding
from .transformer import (
    LayerNorm,
    TransformerEncoder,
    TransformerEncoderLayer,
)

from argparse import Namespace
from huggingface_hub import PyTorchModelHubMixin


def top_k_top_p_filtering(
    logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens_to_keep=1
):
    """Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
    Args:
        logits: logits distribution shape (batch size, vocabulary size)
        if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
        if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
            Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
        Make sure we keep at least min_tokens_to_keep per batch example in the output
    From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
    """
    if top_k > 0:
        top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1))  # Safety check
        # Remove all tokens with a probability less than the last token of the top-k
        indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
        logits[indices_to_remove] = filter_value

    if top_p < 1.0:
        sorted_logits, sorted_indices = torch.sort(logits, descending=True)
        cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)

        # Remove tokens with cumulative probability above the threshold (token with 0 are kept)
        sorted_indices_to_remove = cumulative_probs > top_p
        if min_tokens_to_keep > 1:
            # Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
            sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
        # Shift the indices to the right to keep also the first token above the threshold
        sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
        sorted_indices_to_remove[..., 0] = 0

        # scatter sorted tensors to original indexing
        indices_to_remove = sorted_indices_to_remove.scatter(
            1, sorted_indices, sorted_indices_to_remove
        )
        logits[indices_to_remove] = filter_value
    return logits


def topk_sampling(logits, top_k=10, top_p=1.0, temperature=1.0):
    # temperature: (`optional`) float
    #     The value used to module the next token probabilities. Must be strictly positive. Default to 1.0.
    # top_k: (`optional`) int
    #     The number of highest probability vocabulary tokens to keep for top-k-filtering. Between 1 and infinity. Default to 50.
    # top_p: (`optional`) float
    #     The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. Must be between 0 and 1. Default to 1.

    # Temperature (higher temperature => more likely to sample low probability tokens)
    if temperature != 1.0:
        logits = logits / temperature
    # Top-p/top-k filtering
    logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)
    # Sample
    token = torch.multinomial(F.softmax(logits, dim=-1), num_samples=1)
    return token


class VoiceCraft(
    nn.Module,
    PyTorchModelHubMixin,
    library_name="voicecraft",
    repo_url="https://github.com/jasonppy/VoiceCraft",
    tags=["text-to-speech"],
):
    def __new__(
        cls, args: Optional[Namespace] = None, config: Optional[Dict] = None, **kwargs
    ) -> "VoiceCraft":
        # If initialized from Namespace args => convert to dict config for 'PyTorchModelHubMixin' to serialize it as config.json
        # Won't affect instance initialization
        if args is not None:
            if config is not None:
                raise ValueError("Cannot provide both `args` and `config`.")
            config = vars(args)
        return super().__new__(cls, args=args, config=config, **kwargs)

    def __init__(self, args: Optional[Namespace] = None, config: Optional[Dict] = None):
        super().__init__()

        # If loaded from HF Hub => convert config.json to Namespace args before initializing
        if args is None:
            if config is None:
                raise ValueError("Either `args` or `config` must be provided.")
            args = Namespace(**config)

        self.args = copy.copy(args)
        self.pattern = DelayedPatternProvider(n_q=self.args.n_codebooks)
        if not getattr(self.args, "special_first", False):
            self.args.special_first = 0
        if not getattr(self.args, "n_special", False):
            self.args.n_special = 3
        self.args.eos = getattr(self.args, "eos", -1)
        self.eog = nn.Parameter(
            torch.full((self.args.n_codebooks, 1), self.args.eog, dtype=torch.long),
            requires_grad=False,
        )  # [K 1]
        if self.args.eos > 0:
            assert (
                self.args.eos != self.args.audio_pad_token
                and self.args.eos != self.args.empty_token
            ), self.args.eos
            self.eos = nn.Parameter(
                torch.full((self.args.n_codebooks, 1), self.args.eos, dtype=torch.long),
                requires_grad=False,
            )  # [K 1]
        if isinstance(self.args.audio_vocab_size, str):
            self.args.audio_vocab_size = eval(self.args.audio_vocab_size)

        self.n_text_tokens = self.args.text_vocab_size + 1
        assert (
            self.args.text_pad_token == self.args.text_vocab_size
        ), f"self.args.text_vocab_size: {self.args.text_vocab_size}, self.args.text_pad_token: {self.args.text_pad_token}"

        self.n_audio_tokens = [
            self.args.audio_vocab_size + self.args.n_special
        ] * self.args.n_codebooks  # special tokens: empty token, EOG token, audio pad token
        assert (
            self.args.audio_vocab_size == self.args.empty_token
        ), self.args.empty_token
        assert self.args.eog == self.args.audio_vocab_size + 1, self.args.eog
        assert (
            self.args.audio_pad_token == self.args.audio_vocab_size + 2
        ), self.args.audio_pad_token

        self.text_embedding = TokenEmbedding(
            dim_model=self.args.d_model,
            vocab_size=self.n_text_tokens,
            dropout=self.args.text_embedding_dropout,
        )

        self.audio_embedding = nn.ModuleList(
            [
                TokenEmbedding(
                    dim_model=self.args.audio_embedding_dim,
                    vocab_size=self.n_audio_tokens[k],
                    dropout=self.args.audio_embedding_dropout,
                )
                for k in range(self.args.n_codebooks)
            ]
        )
        self.mask_embedding = nn.Parameter(
            torch.randn(self.args.max_n_spans, self.args.d_model), requires_grad=True
        )
        self.text_positional_embedding = SinePositionalEmbedding(
            self.args.d_model,
            dropout=self.args.text_positional_embedding_dropout,
            scale=False,
            alpha=True,  # learnable scaler, scale the volume of positional embedding
        )
        self.audio_positional_embedding = SinePositionalEmbedding(
            self.args.d_model,
            dropout=self.args.audio_positional_embedding_dropout,
            scale=False,
            alpha=True,  # learnable scaler, scale the volume of positional embedding
        )

        dec_layer = TransformerEncoderLayer(
            self.args.d_model,
            self.args.nhead,
            dim_feedforward=self.args.d_model * 4,
            dropout=self.args.trm_dropout,
            batch_first=True,
            norm_first=True,
            layer_norm_cls=LayerNorm,
        )
        self.decoder = TransformerEncoder(
            dec_layer,
            num_layers=self.args.num_decoder_layers,
            norm=LayerNorm(self.args.d_model),
        )

        self.predict_layer = nn.ModuleList(
            [
                nn.Sequential(
                    nn.Linear(self.args.d_model, self.args.audio_vocab_size // 2),
                    nn.GELU(),
                    nn.Linear(self.args.audio_vocab_size // 2, self.n_audio_tokens[k]),
                )
                for k in range(self.args.n_codebooks)
            ]
        )

        self.accuracy_metrics = nn.ModuleList(
            [
                MulticlassAccuracy(
                    self.n_audio_tokens[k],
                    top_k=10,
                    average="micro",
                    multidim_average="global",
                    ignore_index=None,
                )
                for k in range(self.args.n_codebooks)
            ]
        )

    def prepare_mask_intervals(self, y_lens):
        mask_intervals = []
        non_mask_intervals = []

        for i, y_len in enumerate(y_lens):
            if self.args.mask_sample_dist == "uniform":
                n_spans = random.choice(range(1, self.args.max_n_spans + 1))
            elif "poisson" in self.args.mask_sample_dist.lower():
                param = float(self.args.mask_sample_dist[len("poisson") :])
                poisson_sample = torch.poisson(torch.tensor([param]))
                n_spans = int(poisson_sample.clamp(1, self.args.max_n_spans).item())

            starts = random.sample(
                range(1, y_len - 1 - self.args.mask_len_min), n_spans
            )
            starts = sorted(starts)

            for j in range(len(starts) - 1, 0, -1):
                if starts[j] - starts[j - 1] < self.args.min_gap:
                    del starts[j]  # If elements are too close, delete the later one
            assert (
                len(starts) > 0
            ), f"there is no masked span left, y_len: {y_len}, sampled n_spans: {n_spans}"

            temp_starts = starts + [y_len]
            gaps = [
                temp_starts[j + 1] - temp_starts[j] for j in range(len(temp_starts) - 1)
            ]

            ends = []

            for j, (start, gap) in enumerate(zip(starts, gaps)):
                mask_len = random.randint(
                    self.args.mask_len_min, self.args.mask_len_max
                )
                # if mask_len > gap * self.args.max_mask_portion: # make sure the masks are not overlapping with each other
                if (
                    mask_len > gap - 1
                ):  # make sure the masks are not overlapping with each other
                    # temp_mask_start = int(0.6*gap*self.args.max_mask_portion)
                    # temp_mask_end = int(gap*self.args.max_mask_portion)
                    temp_mask_start = 1
                    temp_mask_end = gap - 1
                    mask_len = random.randint(temp_mask_start, temp_mask_end)
                ends.append(start + mask_len)

            mask_intervals.append([(s, e) for s, e in zip(starts, ends)])
            non_mask_intervals.append(
                [(ns, ne) for ns, ne in zip([0] + ends, starts + [y_len])]
            )

        return mask_intervals, non_mask_intervals

    def rearrange(self, y, non_mask_intervals, mask_intervals):
        reduced_eog = getattr(self.args, "reduced_eog", 0)
        rearranged_y = []
        for i in range(len(y)):
            if self.args.eos > 0:
                assert reduced_eog
                cur_y = (
                    [y[i, :, item[0] : item[1]] for item in non_mask_intervals[i][:-1]]
                    + [
                        torch.cat(
                            [
                                y[
                                    i,
                                    :,
                                    non_mask_intervals[i][-1][0] : non_mask_intervals[
                                        i
                                    ][-1][1],
                                ],
                                self.eos,
                            ],
                            dim=-1,
                        )
                    ]
                    + [
                        torch.cat([y[i, :, item[0] : item[1]], self.eog], dim=-1)
                        for item in mask_intervals[i]
                    ]
                )  # only insert eog to the last non-mask-interval, which is when the utterance actual ends
            else:
                if reduced_eog:
                    cur_y = (
                        [
                            y[i, :, item[0] : item[1]]
                            for item in non_mask_intervals[i][:-1]
                        ]
                        + [
                            torch.cat(
                                [
                                    y[
                                        i,
                                        :,
                                        non_mask_intervals[i][-1][
                                            0
                                        ] : non_mask_intervals[i][-1][1],
                                    ],
                                    self.eog,
                                ],
                                dim=-1,
                            )
                        ]
                        + [
                            torch.cat([y[i, :, item[0] : item[1]], self.eog], dim=-1)
                            for item in mask_intervals[i]
                        ]
                    )  # only insert eog to the last non-mask-interval, which is when the utterance actual ends
                else:
                    cur_y = [
                        torch.cat([y[i, :, item[0] : item[1]], self.eog], dim=-1)
                        for item in non_mask_intervals[i]
                    ] + [
                        torch.cat([y[i, :, item[0] : item[1]], self.eog], dim=-1)
                        for item in mask_intervals[i]
                    ]  # eog is added to each section TODO this is not correct, I should add eog to non_mask_intervals if that segment is not the ending segment (as there is no way for the model to predict eog for those segments, and this will do harm to tts experiment, where the model randomly output eog for the first segment)
            rearranged_y.append(cur_y)
        return rearranged_y

    def shift(self, rearranged_y):
        shifted_y = []
        patterns = []
        for i in range(len(rearranged_y)):
            cur_patterns = [
                self.pattern.get_pattern(cur_y.shape[1]) for cur_y in rearranged_y[i]
            ]
            out = [
                cur_pattern.build_pattern_sequence(
                    z=cur_y.unsqueeze(0).contiguous(),
                    special_token=self.args.empty_token,
                    keep_only_valid_steps=False,
                )
                for cur_pattern, cur_y in zip(cur_patterns, rearranged_y[i])
            ]
            shifted_y.append(
                [item[0].squeeze(0) for item in out]
            )  # the first item is values, later two are indexes and mask
            patterns.append(cur_patterns)
        return shifted_y, patterns

    def insert_mask(self, shifted_y):
        inserted_y = []
        mask_position = []
        mask_value = []
        for i in range(len(shifted_y)):
            num_masks = (len(shifted_y[i]) - 1) // 2
            assert num_masks == (len(shifted_y[i]) - 1) / 2, len(shifted_y[i])
            emb_inds = list(range(self.args.max_n_spans))
            if self.args.shuffle_mask_embedding:
                random.shuffle(emb_inds)
            emb_inds_use = emb_inds[:num_masks]
            emb_inds_use = emb_inds_use + emb_inds_use
            mask_value.append(emb_inds_use)
            cur_inserted_y = []
            cur_mask_position = []
            for j in range(len(shifted_y[i]) - 1):
                cur_inserted_y.append(shifted_y[i][j])
                cur_mask_position.append(
                    sum([item.shape[1] for item in cur_inserted_y])
                )  # each item is of shape [K S], so take shape[1]
                cur_inserted_y.append(
                    self.eog
                )  # insert mask token of shape [K, 1], BUT we are actually using the eog token as a place holder here, as the real mask will be inserted in embed_y function

            cur_inserted_y.append(shifted_y[i][-1])

            inserted_y.append(cur_inserted_y)
            mask_position.append(cur_mask_position)
        return inserted_y, mask_position, mask_value

    def cat_y(self, inserted_y, mask_position, y_lens):
        reduced_eog = getattr(self.args, "reduced_eog", 0)
        cated_y = []
        new_y_lens = []
        for i in range(len(inserted_y)):
            cur_cated_y = torch.cat(inserted_y[i], dim=1)  # [K S]
            cur_cated_y = cur_cated_y.transpose(1, 0)  # [S K]
            cur_cated_y_len = cur_cated_y.shape[0]
            if reduced_eog:
                assert cur_cated_y_len == y_lens[i] + len(mask_position[i]) + (
                    len(mask_position[i]) + 1
                ) * self.args.n_codebooks + (
                    len(mask_position[i]) / 2 + 1
                ), f"cur_cated_y_len == {cur_cated_y_len}, but it should be y_lens[i] ({y_lens[i]}) + len(mask_position[i]) ({len(mask_position[i])}) + (len(mask_position[i]) + 1) * self.args.n_codebooks ({(len(mask_position[i]) + 1) * self.args.n_codebooks}) + (len(mask_position[i])/2 + 1) ({len(mask_position[i])/2 + 1})={y_lens[i] + len(mask_position[i]) + (len(mask_position[i]) + 1) * self.args.n_codebooks + (len(mask_position[i])/2 + 1)}"
            else:
                assert cur_cated_y_len == y_lens[i] + len(mask_position[i]) + (
                    len(mask_position[i]) + 1
                ) * self.args.n_codebooks + (
                    len(mask_position[i]) + 1
                ), f"cur_cated_y_len == {cur_cated_y_len}, but it should be y_lens[i] ({y_lens[i]}) + len(mask_position[i]) ({len(mask_position[i])}) + (len(mask_position[i]) + 1) * self.args.n_codebooks ({(len(mask_position[i]) + 1) * self.args.n_codebooks}) + (len(mask_position[i]) + 1) ({len(mask_position[i]) + 1})"  # the last term represent the inserted eog token, originally it's inserted at the end of every token, but this is wrong
            new_y_lens.append(cur_cated_y_len)
            cated_y.append(cur_cated_y)

        cated_y = torch.nn.utils.rnn.pad_sequence(
            cated_y, batch_first=False, padding_value=self.args.audio_pad_token
        )
        assert cated_y.shape == torch.Size(
            [max(new_y_lens), len(inserted_y), self.args.n_codebooks]
        ), f"cated_y.shape: {cated_y.shape}, but it should be {torch.Size([max(new_y_lens,len(inserted_y), self.args.n_codebooks)])}"
        cated_y = cated_y.permute(2, 0, 1)  # [T,B,K]->[K,T,B]
        assert cated_y.shape[0] == self.args.n_codebooks, cated_y.shape
        return cated_y, torch.LongTensor(new_y_lens).to(cated_y.device)

    def embed_y(self, cated_y, mask_position, mask_value):
        embedded_y = torch.stack(
            [self.audio_embedding[k](cated_y[k]) for k in range(self.args.n_codebooks)],
            dim=0,
        )  # [K, T, B, D]
        assert embedded_y.shape[0] == self.args.n_codebooks, embedded_y.shape
        assert embedded_y.shape[-1] == self.args.d_model, embedded_y.shape
        embedded_y = embedded_y.sum(dim=0)  # [K,T,B,D]->[T,B,D]
        embedded_y = embedded_y.transpose(1, 0)  # [T,B,D]->[B,T,D]
        for i in range(len(embedded_y)):
            if len(mask_position[i]) > 0:
                embedded_y[i, mask_position[i]] = self.mask_embedding[mask_value[i]]
        return embedded_y

    def prepare_input_target(self, y, y_lens):
        # rearrange y
        # assume y shape: [B T K], K is n_codebooks
        assert y.shape[1] == self.args.n_codebooks, y.shape
        # sample mask_intervals
        mask_intervals, non_mask_intervals = self.prepare_mask_intervals(y_lens)

        # need to have EOG in each section (SOG will be generated by the pattern class)
        # but mask can be inserted later after we have shifted the input
        # y could be rearranged in this way:
        # [
        # [tensor[4, 12], tensor[4, 45], tensor[4, 102], tensor[4, 32]], tensor[4, 22]],
        # [tensor[4, 44], tensor[4, 56], tensor[4, 19]],
        # ...
        # ]
        # for the first list of tensors (4 tensors), first 3 tensors are non_masked part, last 2 are masked part.
        # NOTE #non_masked_part = #masked_part + 1
        # NOTE *these are also the targets*
        # added eog at the end of each segment (masked segment and unmasked segment)
        rearranged_y = self.rearrange(y, non_mask_intervals, mask_intervals)
        targets = rearranged_y  # each element in each sample is of shape [K T]
        assert targets[0][0].shape[0] == self.args.n_codebooks, targets[0][0].shape

        # next we need to apply pattern shifting to each tensor, after which, we'll replace the starting tokens of each section with a token that's different from the special padding token
        #  [[5, 1, 2, 3, 4, 5, 5],
        #  [5, 5, 1, 2, 3, 4, 5],
        #  [5, 5, 5, 1, 2, 3, 4]]
        shifted_y, patterns = self.shift(rearranged_y)  # each element [K S]
        assert shifted_y[0][0].shape[0] == self.args.n_codebooks, shifted_y[0][0].shape[
            0
        ]

        # then, insert mask token at the intersection of each tensor (we want to decide the arrangement of the mask (shuffle or not)), we better have a separate nn.embedding for it
        # we also need to record the position of the inserted mask
        inserted_y, mask_position, mask_value = self.insert_mask(shifted_y)
        assert inserted_y[0][0].shape[0] == self.args.n_codebooks, inserted_y[0][
            0
        ].shape[0]
        assert inserted_y[0][1].shape == torch.Size(
            (self.args.n_codebooks, 1)
        ), f"this should be a mask, so should have shape {(self.args.n_codebooks, 1)}, but it's {inserted_y[0][1].shape}"

        # then concat tensors that belong to the same sample (in order) then get the length of each sample, and then stack them in batch dimension, pad them with pad_token
        cated_y, new_y_lens = self.cat_y(inserted_y, mask_position, y_lens)  # KTB
        assert cated_y.shape == torch.Size(
            (self.args.n_codebooks, cated_y.shape[1], len(inserted_y))
        )

        # embed remember to separately embed the mask tokens
        embedded_y = self.embed_y(cated_y, mask_position, mask_value)  # BTD
        assert embedded_y.shape[1:] == torch.Size(
            (max(new_y_lens), self.args.d_model)
        ), embedded_y.shape

        # positional embedding
        y_input = self.audio_positional_embedding(embedded_y)

        # make attention mask and padding mask
        y_padding_mask = make_pad_mask(new_y_lens).to(y.device)
        y_attention_mask = (
            torch.triu(torch.ones(y_input.shape[1], y_input.shape[1]), diagonal=1)
            .bool()
            .to(y_padding_mask.device)
        )
        return (
            y_input,
            new_y_lens,
            targets,
            y_padding_mask,
            y_attention_mask,
            mask_position,
            patterns,
        )

    def remove_mask(self, logits, mask_position, new_y_lens):
        # logits: [B K S card]
        logits_use = []
        for i in range(len(logits)):
            non_mask_positions = [-1] + mask_position[i] + [new_y_lens[i]]
            non_mask_intervals = [
                [non_mask_positions[i] + 1, non_mask_positions[i + 1]]
                for i in range(len(non_mask_positions) - 1)
            ]
            cur_logits_use = [logits[i, :, l:r] for l, r in non_mask_intervals]
            logits_use.append(cur_logits_use)

        return logits_use

    def revert_pattern(self, patterns, logits_use):
        logits_final = []
        logit_masks = []
        for i in range(len(logits_use)):
            cur_logits = [
                item.unsqueeze(0).permute(0, 3, 1, 2).contiguous()
                for item in logits_use[i]
            ]  # each item is of shape [1 K S card] [1 card K S]
            cur_logits_final = [
                cur_pattern.revert_pattern_logits(item, 0, keep_only_valid_steps=False)
                for cur_pattern, item in zip(patterns[i], cur_logits)
            ]  # if input output order doesn't match, this step will give an error
            cur_logits_final_ret = [
                item[0].permute(0, 2, 3, 1).squeeze(0) for item in cur_logits_final
            ]  # each element is of shape [K,T,card]
            logits_final.append(cur_logits_final_ret)
            logit_masks.append([item[2] for item in cur_logits_final])

        return logits_final, logit_masks

    def dec_forward(
        self,
        x_input,
        x_lens,
        x_attention_mask,
        x_padding_mask,
        y_input,
        new_y_lens,
        y_attention_mask,
        y_padding_mask,
        past=None,
        last_3_tokens=False,
    ):
        x_attn_mask = F.pad(
            x_attention_mask,
            (0, new_y_lens.max()),
            value=True,
        )  # x attn to all x, doesn't attn to any y, this follow figure 3 of the valle paper
        y_attn_mask = F.pad(
            y_attention_mask,
            (x_lens.max(), 0),  # y is padded at the front
            value=False,
        )  # y attn to all x, for y itself use lower triangle mask to ensure autoregressive
        xy_attn_mask = torch.concat([x_attn_mask, y_attn_mask], dim=0)

        # merge key padding and attention masks
        bsz, src_len = x_input.shape[0], x_lens.max() + new_y_lens.max()
        xy_padding_mask = torch.concat([x_padding_mask, y_padding_mask], dim=1)
        _xy_padding_mask = (
            xy_padding_mask.view(bsz, 1, 1, src_len)
            .expand(-1, self.args.nhead, -1, -1)
            .reshape(bsz * self.args.nhead, 1, src_len)
        )
        # Check shapes and resize+broadcast as necessary
        if xy_attn_mask.shape != _xy_padding_mask.shape:
            assert (
                xy_attn_mask.ndim + 1 == _xy_padding_mask.ndim
            ), f"xy_attn_mask.shape: {xy_attn_mask.shape}, _xy_padding_mask: {_xy_padding_mask.shape}"
            xy_attn_mask = xy_attn_mask.unsqueeze(0).repeat(
                _xy_padding_mask.shape[0], 1, 1
            )  # Example approach
        xy_attn_mask = xy_attn_mask.logical_or(_xy_padding_mask)

        new_attn_mask = torch.zeros_like(xy_attn_mask)
        new_attn_mask.masked_fill_(xy_attn_mask, float("-inf"))
        xy_attn_mask = new_attn_mask

        xy_input = torch.cat([x_input, y_input], dim=1)

        if past == None:  # do not use kvcache
            out, _ = self.decoder((xy_input, None), mask=xy_attn_mask)
            return out[:, x_lens.max() :], None
        else:  # use kvcache
            if (
                past.ndim > 3
            ):  # uses kvcache, only need to pass the last tokens, this doesn't work with multi-span speech editing yet
                if last_3_tokens:
                    xy_input = xy_input[:, -3:]
                    xy_attn_mask = xy_attn_mask[:, -3:]
                else:
                    xy_input = xy_input[:, -1:]
                    xy_attn_mask = xy_attn_mask[:, -1:]

            out, present = self.decoder((xy_input, None), mask=xy_attn_mask, past=past)
            if isinstance(out, tuple):  # get rid of stage_embedding
                out = out[0]

            if out.shape[1] > x_lens.max():  # the first pass, not kvcache yet
                return out[:, x_lens.max() :], present
            else:  # used kvcache
                return out, present

    def forward(self, batch):
        """
        Args:
          x:
            A 2-D tensor of shape (N, S).
          x_lens:
            A 1-D tensor of shape (N,). It contains the number of tokens in `x`
            before padding.
          y:
            A 3-D tensor of shape (N, K, T).
            where K is the number of codebooks
          y_lens:
            A 1-D tensor of shape (N,). It contains the number of tokens in `x`
            before padding.
        """
        x, x_lens, y, y_lens = batch["x"], batch["x_lens"], batch["y"], batch["y_lens"]
        if len(x) == 0:
            return None
        x = x[
            :, : x_lens.max()
        ]  # this deal with gradient accumulation, where x_lens.max() might not be longer than the length of the current slice of x
        y = y[:, :, : y_lens.max()]
        assert x.ndim == 2, x.shape
        assert x_lens.ndim == 1, x_lens.shape
        assert y.ndim == 3 and y.shape[1] == self.args.n_codebooks, y.shape
        assert y_lens.ndim == 1, y_lens.shape
        # makes attention mask and padding mask for x
        x_padding_mask = make_pad_mask(x_lens).to(x.device)
        x_attention_mask = (
            torch.triu(torch.ones(x.shape[1], x.shape[1]), diagonal=1)
            .bool()
            .to(x_padding_mask.device)
        )
        x_input = self.text_embedding(x)
        x_input = self.text_positional_embedding(x_input)
        (
            y_input,
            new_y_lens,
            targets,
            y_padding_mask,
            y_attention_mask,
            mask_position,
            patterns,
        ) = self.prepare_input_target(y, y_lens)
        y_out = self.dec_forward(
            x_input,
            x_lens,
            x_attention_mask,
            x_padding_mask,
            y_input,
            new_y_lens,
            y_attention_mask,
            y_padding_mask,
        )
        y_out = y_out[0]  # no kv-caching during training
        assert (
            y_out.shape == y_input.shape
        ), f"y_out.shape: {y_out.shape}, y_input.shape: {y_input.shape}"  # [B S D]

        logits = torch.stack(
            [self.predict_layer[i](y_out) for i in range(self.args.n_codebooks)], dim=1
        )  # [B K S card]
        # take out the mask token (using mask_position and new_y_lens) and revert (using function provided by self.pattern)
        assert (
            logits.shape[1] == self.args.n_codebooks
            and logits.shape[3] == self.n_audio_tokens[0]
        ), logits.shape

        logits_use = self.remove_mask(logits, mask_position, new_y_lens)

        # revert the pattern shift for each logits section in each sample
        logits_final, logit_masks = self.revert_pattern(patterns, logits_use)
        assert (
            logits_final[0][0].shape[0] == self.args.n_codebooks
            and logits_final[0][0].shape[2] == self.n_audio_tokens[0]
        ), f"it is: {logits_final[0][0].shape}, but should be [K, T, card]"
        # testing
        sample_to_test = 0
        assert len(logits_final[sample_to_test]) == len(
            targets[sample_to_test]
        ), f"{len(logits_final[sample_to_test])}, {len(targets[sample_to_test])}"
        temp = sum(
            [
                logits_final[sample_to_test][i].shape[:-1]
                != targets[sample_to_test][i].shape
                for i in range(len(targets[sample_to_test]))
            ]
        )
        assert (
            temp == 0
        ), f"none equal positions: {temp}, total number of elements: {len(targets[sample_to_test])}"

        logit_masked = sum(
            [(item == False).any() for cur_mask in logit_masks for item in cur_mask]
        )
        assert logit_masked == 0, logit_masks

        logits = torch.cat(
            [torch.cat(item, dim=1) for item in logits_final], dim=1
        )  # [K, T1+T2+T3+..., card]
        targets = torch.cat(
            [torch.cat(item, dim=1) for item in targets], dim=1
        )  # [K, T1+T2+T3+...]
        assert targets.shape[0] == logits.shape[0], f"{targets.shape}, {logits.shape}"
        loss = []
        ntokens = []
        top10acc = []
        for k, (logit, target) in enumerate(zip(logits, targets)):
            loss.append(F.cross_entropy(logit, target, reduction="mean"))
            top10acc.append(self.accuracy_metrics[k](logit.detach(), target))
            ntokens.append(len(logit))

        all_ntokens = sum(ntokens)
        if self.args.codebook_weight != None:
            codebook_weight = eval(self.args.codebook_weight)
        else:
            codebook_weight = [1.0] * self.args.n_codebooks
        loss = sum([l * nt * cw for l, nt, cw in zip(loss, ntokens, codebook_weight)])
        top10acc_by_codebook = [t10a * nt for t10a, nt in zip(top10acc, ntokens)]
        top10acc = sum(top10acc_by_codebook)
        ntokens = torch.tensor(all_ntokens).to(logits.device)

        return {
            "loss": loss,
            "top10acc": top10acc,
            "top10acc_by_codebook": top10acc_by_codebook,
            "effective_ntoken": ntokens,
        }

    def inference(
        self,
        x: torch.Tensor,
        x_lens: torch.Tensor,
        y: torch.Tensor,
        mask_interval: list[torch.Tensor],
        top_k: int = -100,
        top_p: float = 1.0,
        temperature: float = 1.0,
        stop_repetition: int = -1,
        kvcache: int = 1,
        silence_tokens: list[int] = [1388, 1898, 131],
    ) -> torch.Tensor:
        """
        Args:
          x:
            A 2-D tensor of shape (1, L).
          x_lens:
            A 1-D tensor of shape (1,). It contains the number of tokens in `x`
            before padding.
          y:
            A 3-D tensor of shape (1, T, K).
          mask_interval:
            a list of tensors of shape (M, 2). contains M mask_start and mask_end. list length is actually 1, because we only support single sample inference for now
          top_k: (`optional`) int
            The number of highest probability tokens to keep for top-k-filtering. Default to -100.
          top_p: (`optional`) float
            For Neucleus sampling
          temperature: (`optional`) float
            The value used to module the next token probabilities. Must be strictly positive. Default to 1.0.
          eog_coef: (`optional`) float
            if 0, no change to eog token logits, otherwise, will adjust eog token logit based on the difference between acoustic token and phn token length
          stop_repetition (`optional`) int
            if not -1, will set the logits of a token that repeated this many times to be -100000, to avoid generating it again. This only apply to tokens from the first codebook
          allowed_repeat_tokens (`optional`) list of ints
            by inspecting the validation set, get a few tokens that indeed repeat a significant amount of time, and exclude those tokens from prevent repetition
          ultimate_stop_repetition (`optional`) int
            no matter that token it is, stop repetition once after this number
        """
        assert x.ndim == 2, x.shape
        assert x_lens.ndim == 1, x_lens.shape
        assert y.ndim == 3, y.shape
        if self.args.special_first:
            y = y + int(self.args.n_special)
        y = y.transpose(2, 1)  # [1,T,K] -> [1,K,T]
        assert (
            y.shape[0] == 1 and y.shape[1] == self.args.n_codebooks
        ), y.shape  # there is no padding
        assert mask_interval.shape == torch.Size(
            (1, mask_interval.shape[1], 2)
        ), mask_interval

        # make x attention mask and x_input
        x_attention_mask = (
            torch.triu(torch.ones(x.shape[1], x.shape[1]), diagonal=1)
            .bool()
            .to(x.device)
        )
        # x_attention_mask = torch.zeros(x.shape[1], x.shape[1]).bool().to(x.device)
        x_input = self.text_embedding(x)
        x_input = self.text_positional_embedding(x_input)

        # make initial y_input

        # make mask_interval and non_mask_interval
        y_len = y.shape[2]
        y_lens = torch.LongTensor([y_len]).to(y.device)
        mask_interval = mask_interval[0]
        starts = [item[0].item() for item in mask_interval] + [y_len]
        ends = [0] + [item[1].item() for item in mask_interval]
        mask_intervals = [
            [(item[0].item(), item[1].item()) for item in mask_interval]
        ]  # a werid name change, mask_interval is input, now is mask_intervals, with one more dimension
        non_mask_intervals = [[(ns, ne) for ns, ne in zip(ends, starts)]]

        # rearrange y
        # will add have EOG in each section (SOG will be generated by the pattern class)
        # but mask can be inserted later after we have shifted the input
        # y could be rearranged in this way:
        # [
        # [tensor[4, 12], tensor[4, 45], tensor[4, 102], tensor[4, 32]], tensor[4, 22]],
        # [tensor[4, 44], tensor[4, 56], tensor[4, 19]],
        # ...
        # ]
        # for the first list of tensors (4 tensors), first 3 tensors are non_masked part, last 2 are masked part.
        # NOTE #non_masked_part = #masked_part + 1
        rearranged_y = self.rearrange(y, non_mask_intervals, mask_intervals)
        assert rearranged_y[0][0].shape[0] == self.args.n_codebooks, rearranged_y[0][
            0
        ].shape

        # shift each element of y
        # next we need to apply pattern shifting to each tensor, after which, we'll replace the starting tokens of each section with a token that's different from the special padding token
        #  [
        #  [empty, 1, 2, 3, eog, empty, empty, empty],
        #  [empty, empty, 1, 2, 3, eog, empty, empty],
        #  [empty, empty, empty, 1, 2, 3, eog, empty],
        #  [empty, empty, empty, empty, 1, 2, 3, eog]
        # ]
        shifted_y, patterns = self.shift(
            rearranged_y
        )  # each element [K S], patterns is not used, as we directly use the original input y
        assert shifted_y[0][0].shape[0] == self.args.n_codebooks, shifted_y[0][0].shape

        # insert mask token at the intersction of each tensor, but *actually inserted eog as place holder*
        # the position of inserted mask is also recorded
        # and the mask_value, the index of the mask emb is recorded
        inserted_y, mask_position, mask_value = self.insert_mask(shifted_y)
        assert inserted_y[0][0].shape[0] == self.args.n_codebooks, inserted_y[0][
            0
        ].shape[0]
        assert inserted_y[0][1].shape == torch.Size(
            (self.args.n_codebooks, 1)
        ), f"this should be a mask, so should have shape {(self.args.n_codebooks, 1)}, but it's {inserted_y[0][1].shape}"

        # then concat tensors that belong to the same sample (in order) then get the length of each sample, and then stack them in batch dimension, pad them with pad_token
        cated_y, new_y_lens = self.cat_y(inserted_y, mask_position, y_lens)  # KTB
        assert cated_y.shape == torch.Size(
            (self.args.n_codebooks, cated_y.shape[1], len(inserted_y))
        )
        assert not (cated_y == self.args.audio_pad_token).any(), cated_y

        ### NOTE this is different from forward, as we will remove the masked tokens
        ### say there are two masked region
        ### the cated_y should be like
        ### [empty a a a a mask0 empty b b b mask1 empty c c mask0 empty]
        ### which means we need to take the part after the last empty out
        num_mask = len(mask_position[0]) // 2
        assert num_mask == len(mask_position[0]) / 2, mask_position
        cated_y = cated_y[:, : mask_position[0][num_mask] + 2]  # of shape [K,T,B]
        # logging.info(f"mask_position[0][num_mask]+2: {mask_position[0][num_mask]+2}")
        more_mask_value = mask_value[0][
            num_mask + 1 :
        ]  # NOTE this will be used in the generation loop for reference for inserting mask embedding
        new_y_lens[0] = mask_position[0][num_mask] + 2
        mask_position[0] = mask_position[0][: num_mask + 1]
        assert (
            mask_position[0][num_mask] + 2 == cated_y.shape[1]
        ), f"num_mask: {num_mask}, mask_position: {mask_position}, cated_y.shape: {cated_y.shape}"

        # embed: remember to separately embed the mask tokens
        embedded_y = self.embed_y(
            cated_y, mask_position, [mask_value[0][: num_mask + 1]]
        )  # BTD
        # assert embedded_y.shape == torch.Size((y.shape[0], max(new_y_lens), self.args.d_model)), embedded_y.shape

        # positional embedding
        y_input = self.audio_positional_embedding(embedded_y)

        # make attention mask and padding mask
        y_attention_mask = (
            torch.triu(torch.ones(y_input.shape[1], y_input.shape[1]), diagonal=1)
            .bool()
            .to(y.device)
        )
        # y_lens = torch.LongTensor([y_input.shape[1]]).to(y.device)

        x_padding_mask = torch.full((1, x_lens[0]), False).to(x.device)
        y_padding_mask = torch.full((1, new_y_lens[0]), False).to(y.device)

        codebook_eog = [False] * self.args.n_codebooks
        generated = []  # doesn't contain any empty_token, contains eog
        cur_generated = []
        # say 0 is empty, 4 is eog
        # tensor([[ 1,  2,  3,  4,  0,  0],
        #         [ 0,  1,  2,  3,  4,  0],
        #         [ 0,  0,  1,  2,  3,  4]])
        num_gen = []
        cur_num_gen = 0
        ##################### silence repetition handling #####################
        ##################### silence repetition handling #####################
        logging.info(
            f"silence tokens: {silence_tokens}, note that if you are not using the pretrained encodec 6f79c6a8, make sure you specified it yourself, rather than using the default"
        )
        consec_silence_count = 0
        prev_token = None
        ##################### silence repetition handling #####################
        ##################### silence repetition handling #####################
        # prepare the cache placeholder
        # n_layers, 2, bsz, num_heads, src_len, head_dim
        past = (
            torch.ones(
                [self.args.num_decoder_layers, 2, x.shape[0]],
                device=x.device,
                dtype=torch.float32,
            )
            if kvcache
            else None
        )
        # handle multi-span kv-cache
        new_masked_span = False

        def sample_helper(
            n_eog,
            logits,
            codebook_eog,
            top_k,
            top_p,
            temperature,
            prev_token,
            consec_silence_count,
            stop_repetition,
            silence_tokens,
            cur_num_gen,
        ):
            if n_eog == 0:
                logits_adjust = logits
                for jj in range(1, self.args.n_codebooks):
                    logits_adjust[jj][self.args.eog] = -10000
                    logits_adjust[jj][self.args.empty_token] = -10000
                ##################### silence repetition handling #####################
                if (
                    stop_repetition > 0
                    and prev_token in silence_tokens
                    and consec_silence_count > stop_repetition
                ):
                    if logits_adjust[0, prev_token] < 0:
                        logits_adjust[0, prev_token] = logits_adjust[0, prev_token] * (
                            consec_silence_count - (stop_repetition - 1)
                        )
                    else:
                        logits_adjust[0, prev_token] = logits_adjust[0, prev_token] / (
                            consec_silence_count - (stop_repetition - 1)
                        )
                ##################### silence repetition handling #####################
                if type(logits_adjust) == list:
                    samples_list = []
                    for logit in logits_adjust:
                        # print(logit)
                        # print(logit.shape)
                        cur_sample = topk_sampling(
                            logit.unsqueeze(0),
                            top_k=top_k,
                            top_p=top_p,
                            temperature=temperature,
                        )  # [1, 1]
                        samples_list.append(cur_sample)
                    samples = torch.cat(samples_list, dim=0)  # [K, 1]
                else:
                    samples = topk_sampling(
                        logits_adjust, top_k=top_k, top_p=top_p, temperature=temperature
                    )  # [K, 1]
                assert samples.shape == torch.Size(
                    (self.args.n_codebooks, 1)
                ), f"samples.shape: {samples.shape}"
                if cur_num_gen < self.args.n_codebooks - 1:
                    for jj in range(1, self.args.n_codebooks - cur_num_gen):
                        samples[-jj, 0] = self.args.empty_token

                if (
                    samples[0, 0] == self.args.eog
                    or torch.argmax(logits[0], dim=-1) == self.args.eog
                    or y_input.shape[1] > x_lens[0] * 10
                ):  # last one means y is already too long, shouldn't happen, but put it here
                    samples[0, 0] = self.args.eog
                    codebook_eog[0] = True
                ##################### silence repetition handling #####################
                ##################### silence repetition handling #####################
                if samples[0, 0] in silence_tokens and samples[0, 0] == prev_token:
                    consec_silence_count += 1
                else:
                    consec_silence_count = 0
                prev_token = samples[0, 0]
                ##################### silence repetition handling #####################
                ##################### silence repetition handling #####################
                return samples, codebook_eog, prev_token, consec_silence_count
            else:
                assert (
                    sum(codebook_eog[i] for i in range(n_eog)) == n_eog
                ), f"codebook_eog: {codebook_eog}, but n_eog: {n_eog}"
                logits_adjust = logits
                for jj in range(n_eog + 1, self.args.n_codebooks):
                    logits_adjust[jj][self.args.eog] = -10000
                    logits_adjust[jj][self.args.empty_token] = -10000
                if type(logits_adjust) == list:
                    samples_list = []
                    for logit in logits_adjust:
                        cur_sample = topk_sampling(
                            logit.unsqueeze(0),
                            top_k=top_k,
                            top_p=top_p,
                            temperature=temperature,
                        )  # [1, 1]
                        samples_list.append(cur_sample)
                    samples = torch.cat(samples_list, dim=0)  # [K, 1]
                else:
                    samples = topk_sampling(
                        logits_adjust, top_k=top_k, top_p=top_p, temperature=temperature
                    )  # [K, 1]
                for jj in range(n_eog):
                    samples[jj, 0] = self.args.empty_token
                samples[n_eog, 0] = self.args.eog
                codebook_eog[n_eog] = True
                return samples, codebook_eog, prev_token, consec_silence_count

        while True:
            y_out, present = self.dec_forward(
                x_input,
                x_lens,
                x_attention_mask,
                x_padding_mask,
                y_input,
                new_y_lens,
                y_attention_mask,
                y_padding_mask,
                past=past,
                last_3_tokens=new_masked_span,
            )
            if new_masked_span:
                new_masked_span = False

            if past != None:
                past = (
                    torch.cat([past, present.to(past.dtype)], dim=-2)
                    if past.ndim > 3
                    else present.to(past.dtype)
                )

            y_out = y_out[:, -1:]  # only take the last one

            logits = torch.stack(
                [self.predict_layer[i](y_out) for i in range(self.args.n_codebooks)],
                dim=1,
            )  # [B K S card], B==S==1, so [1 K 1 card]
            logits = logits.squeeze(0).squeeze(1)  # [K card]
            assert logits.shape == torch.Size(
                (self.args.n_codebooks, self.n_audio_tokens[0])
            ), f"{logits.shape}"

            n_eog = sum(codebook_eog)
            assert n_eog < self.args.n_codebooks
            if (
                self.args.eos > 0
            ):  # eos stands for end-of-sentence, which shouldn't be used as we are doing speech editing
                for jj in range(self.args.n_codebooks):
                    logits[jj][self.args.eos] = -10000.0
            # need to use a helper function to hand different n_eog cases
            samples, codebook_eog, prev_token, consec_silence_count = sample_helper(
                n_eog,
                logits,
                codebook_eog,
                top_k,
                top_p,
                temperature,
                prev_token,
                consec_silence_count,
                stop_repetition,
                silence_tokens,
                cur_num_gen,
            )
            cur_num_gen += 1
            cur_generated.append(samples.squeeze(-1))  # [K,1] -> [K]
            # get samples_emb
            samples_emb = torch.stack(
                [
                    self.audio_embedding[k](samples[k])
                    for k in range(self.args.n_codebooks)
                ],
                dim=0,
            )  # [K,1,D]
            samples_emb = samples_emb.sum(dim=0, keepdim=True)  # [1,1,D]

            if (
                sum(codebook_eog) == self.args.n_codebooks
            ):  # generation for the current span is done
                # re-init
                codebook_eog = [False] * self.args.n_codebooks
                num_gen.append(cur_num_gen)
                cur_num_gen = 0
                generated.append(cur_generated)
                cur_generated = []

                # if the current mask span is the last span, then all done
                # else
                # append the next mask token and the four empty tokens to start the next generation
                if len(more_mask_value) > 0:
                    next_mask_ind = more_mask_value.pop(0)
                    mask_emb = (
                        self.mask_embedding[next_mask_ind].unsqueeze(0).unsqueeze(0)
                    )  # [1,1,D]
                    assert mask_emb.shape == torch.Size(
                        (1, 1, self.args.d_model)
                    ), mask_emb.shape
                    empty_token = torch.LongTensor([self.args.empty_token]).to(y.device)
                    empty_emb = torch.stack(
                        [
                            self.audio_embedding[k](empty_token)
                            for k in range(self.args.n_codebooks)
                        ],
                        dim=0,
                    ).sum(
                        dim=0, keepdim=True
                    )  # [1,1,D]
                    assert empty_emb.shape == torch.Size(
                        (1, 1, self.args.d_model)
                    ), empty_emb.shape
                    extra_emb = torch.cat([mask_emb, empty_emb], dim=1)  # [1,2,D]
                    samples_emb = torch.cat(
                        [samples_emb, extra_emb], dim=1
                    )  # [1,3,D] # prev_last_token, mask_token, empty token
                    assert samples_emb.shape == torch.Size(
                        (1, 3, self.args.d_model)
                    ), f"samples_emb.shape: {samples_emb.shape}"
                    ##################### silence repetition handling #####################
                    ##################### silence repetition handling #####################
                    consec_silence_count = 0
                    prev_token = None
                    ##################### silence repetition handling #####################
                    ##################### silence repetition handling #####################

                    # handling kv-caching for multi-span editing
                    new_masked_span = True
                else:
                    break
            else:
                assert samples_emb.shape == torch.Size(
                    (1, 1, self.args.d_model)
                ), f"samples_emb.shape: {samples_emb.shape}"

            embedded_y = torch.cat([embedded_y, samples_emb], dim=1)
            # positional embedding
            y_input = self.audio_positional_embedding(embedded_y)  # [B T D]
            # make attention mask and padding mask
            y_attention_mask = (
                torch.triu(torch.ones(y_input.shape[1], y_input.shape[1]), diagonal=1)
                .bool()
                .to(y.device)
            )
            new_y_lens = torch.LongTensor([y_input.shape[1]]).to(y.device)
            y_padding_mask = torch.full((1, new_y_lens[0]), False).to(y.device)

        assert (
            len(generated) == num_mask
        ), f"len(generated): {len(generated)}, num_mask: {num_mask}"

        # # combine non_masked_span with generated spans
        # first need to shift the generated part back
        flatten_gen = []
        for l, orig_span in enumerate(generated):
            span = torch.stack(orig_span, dim=0)  # [T K]
            span = span.transpose(1, 0)  # [K, T]
            assert span.shape[0] == self.args.n_codebooks, span.shape
            unshifted_span = []
            for j, s in enumerate(span):
                start_from = j
                end_at = -(self.args.n_codebooks - start_from)
                unshifted_span.append(s[start_from:end_at])
            unshifted_span = torch.stack(unshifted_span, dim=0)

            assert (
                unshifted_span.shape[1] == num_gen[l] - self.args.n_codebooks
            ), f"len(unshifted_spans[0]): {len(unshifted_span[0])}, num_gen[l]: {num_gen[l]}"
            flatten_gen.append(unshifted_span)
        # logging.info(f"unshfited_span: {unshifted_span.shape}")
        # raise
        assert len(non_mask_intervals[0]) - 1 == len(
            flatten_gen
        ), f"len(non_mask_intervals[0]): {len(non_mask_intervals[0])}, len(flatten_gen): {len(flatten_gen)}"
        res = []
        for orig_interval, gen in zip(non_mask_intervals[0], flatten_gen):
            res.append(y[0, :, orig_interval[0] : orig_interval[1]])
            res.append(gen)
        res.append(y[0, :, non_mask_intervals[0][-1][0] : non_mask_intervals[0][-1][1]])
        res = torch.cat(res, dim=1).unsqueeze(0)  # [K,new_T] -> [1, K, new_T]

        expected_y_len = (
            y_len
            - sum([item[1] - item[0] for item in mask_intervals[0]])
            + sum([item - self.args.n_codebooks for item in num_gen])
        )
        assert res.shape == torch.Size(
            (1, self.args.n_codebooks, expected_y_len)
        ), f"res.shape: {res.shape}, expected_y_len: {expected_y_len}. y_len - sum([item[1] - item[0] for item in mask_interval]) + sum([item - self.args.n_codebooks for item in num_gen]): {y_len}-{sum([item[1] - item[0] for item in mask_interval])} + {sum([item - self.args.n_codebooks for item in num_gen])}"

        if self.args.special_first:
            res = res - int(self.args.n_special)

        return res

    def inference_tts(
        self,
        x: torch.Tensor,
        x_lens: torch.Tensor,
        y: torch.Tensor,
        top_k: int = -100,
        top_p: float = 1.0,
        temperature: float = 1.0,
        stop_repetition: int = 3,
        kvcache: int = 1,
        silence_tokens: list[int] = [1388, 1898, 131],
        *kargs,
    ) -> torch.Tensor:
        """
        different from inference_tts, this implementation uses kvcache, which should have significant speed up
        Args:
          x:
            A 2-D tensor of shape (1, L).
          x_lens:
            A 1-D tensor of shape (1,). It contains the number of tokens in `x`
            before padding.
          y:
            A 3-D tensor of shape (1, T, K).
          top_k: (`optional`) int
            The number of highest probability tokens to keep for top-k-filtering. Default to -100.
          top_p: (`optional`) float
            For Neucleus sampling
          temperature: (`optional`) float
            The value used to module the next token probabilities. Must be strictly positive. Default to 1.0.
        """
        eog_inference = self.args.eos if self.args.eos > 0 else self.args.eog
        assert x.ndim == 2, x.shape
        assert x_lens.ndim == 1, x_lens.shape
        assert y.ndim == 3, y.shape
        if self.args.special_first:
            y = y + int(self.args.n_special)
        y = y.transpose(2, 1)  # [1,T,K] -> [1,K,T]
        assert (
            y.shape[0] == 1 and y.shape[1] == self.args.n_codebooks
        ), y.shape  # there is no padding

        # make x attention mask and x_input
        x_attention_mask = (
            torch.triu(torch.ones(x.shape[1], x.shape[1]), diagonal=1)
            .bool()
            .to(x.device)
        )
        # x_attention_mask = torch.zeros(x.shape[1], x.shape[1]).bool().to(x.device)
        x_input = self.text_embedding(x)
        x_input = self.text_positional_embedding(x_input)

        y_len = y.shape[2]
        y_lens = torch.LongTensor([y_len]).to(y.device)

        # rearrange y, we don't add eog to the end, this doesn't actually do anything in the tts scenario
        rearranged_y = [[y[0]]]
        assert rearranged_y[0][0].shape[0] == self.args.n_codebooks, rearranged_y[0][
            0
        ].shape

        # shift y to create the delayed pattern
        shifted_y, patterns = self.shift(
            rearranged_y
        )  # each element [K S], patterns is not used, as we directly use the original input y
        assert shifted_y[0][0].shape[0] == self.args.n_codebooks, shifted_y[0][0].shape
        assert len(shifted_y[0]) == 1, len(shifted_y[0])

        # below is different from forward or inference
        # where we cut this shifted part
        shifted_y[0][0] = shifted_y[0][0][:, : -(self.args.n_codebooks - 1)]
        assert (
            not (
                shifted_y[0][0][self.args.n_codebooks :] == self.args.empty_token
            ).any()
            and not (shifted_y[0][0][self.args.n_codebooks :] == self.args.eog).any()
        ), shifted_y[0][0]

        # next section in inference is insert mask at the intersection of each tensor in a sample, but we don't need to do that
        # next section is concate tensors of each sample to one tensor, which we also don't need
        cated_y = shifted_y[0][0].unsqueeze(-1)  # [K,S]->[K,S,B]
        new_y_lens = torch.LongTensor([cated_y.shape[1]]).to(cated_y.device)
        assert cated_y.shape == torch.Size((self.args.n_codebooks, cated_y.shape[1], 1))
        assert not (cated_y == self.args.audio_pad_token).any(), cated_y

        # replace tokens in y with the embeddings, add sum codebooks up
        embedded_y = torch.stack(
            [self.audio_embedding[k](cated_y[k]) for k in range(self.args.n_codebooks)],
            dim=0,
        )  # [K, S, B, D]
        assert embedded_y.shape[0] == self.args.n_codebooks, embedded_y.shape
        assert embedded_y.shape[-1] == self.args.d_model, embedded_y.shape
        embedded_y = embedded_y.sum(dim=0)  # [K,S,B,D]->[S,B,D]
        embedded_y = embedded_y.transpose(1, 0)  # [S,B,D]->[B,S,D]

        # positional embedding
        y_input = self.audio_positional_embedding(embedded_y)

        # make attention mask and padding mask
        y_attention_mask = (
            torch.triu(torch.ones(y_input.shape[1], y_input.shape[1]), diagonal=1)
            .bool()
            .to(y.device)
        )

        x_padding_mask = torch.full((1, x_lens[0]), False).to(x.device)
        y_padding_mask = torch.full((1, new_y_lens[0]), False).to(y.device)

        # entering the generation stage
        # starting from line 708
        codebook_eog = [False] * self.args.n_codebooks
        generated = []  # doesn't contain any empty token, contain eog
        cur_generated = []
        # say 0 is empty, 4 is eog
        # tensor([[ 1,  2,  3,  4,  0,  0],
        #         [ 0,  1,  2,  3,  4,  0],
        #         [ 0,  0,  1,  2,  3,  4]])
        num_gen = []
        cur_num_gen = 0
        ##################### silence repetition handling #####################
        ##################### silence repetition handling #####################
        logging.info(
            f"silence tokens: {silence_tokens}, note that if you are not using the pretrained encodec 6f79c6a8, make sure you specified it yourself, rather than using the default"
        )
        consec_silence_count = 0
        prev_token = None
        ##################### silence repetition handling #####################
        ##################### silence repetition handling #####################

        # prepare the cache placeholder
        # n_layers, 2, bsz, num_heads, src_len, head_dim
        past = (
            torch.ones(
                [self.args.num_decoder_layers, 2, x.shape[0]],
                device=x.device,
                dtype=torch.float32,
            )
            if kvcache
            else None
        )

        # logging.info(f"number of decoder layers: {self.args.num_decoder_layers}")
        # logging.info(f"number of decoder layers: {self.args.num_decoder_layers}")
        # logging.info(f"number of decoder layers: {self.args.num_decoder_layers}")
        def sample_helper(
            n_eog,
            logits,
            codebook_eog,
            top_k,
            top_p,
            temperature,
            prev_token,
            consec_silence_count,
            stop_repetition,
            silence_tokens,
            cur_num_gen,
        ):
            if n_eog == 0:
                logits_adjust = logits
                for jj in range(1, self.args.n_codebooks):
                    logits_adjust[jj][eog_inference] = -10000
                    logits_adjust[jj][self.args.empty_token] = -10000
                if (
                    cur_num_gen <= self.args.encodec_sr // 5
                ):  # this shouldn't happen, but just in case the model stopped too early
                    logits_adjust[0][eog_inference] = -10000
                ##################### silence repetition handling #####################
                if (
                    stop_repetition > 0
                    and prev_token in silence_tokens
                    and consec_silence_count > stop_repetition
                ):
                    if logits_adjust[0, prev_token] < 0:
                        logits_adjust[0, prev_token] = logits_adjust[0, prev_token] * (
                            consec_silence_count - (stop_repetition - 1)
                        )
                    else:
                        logits_adjust[0, prev_token] = logits_adjust[0, prev_token] / (
                            consec_silence_count - (stop_repetition - 1)
                        )
                ##################### silence repetition handling #####################
                samples = topk_sampling(
                    logits_adjust, top_k=top_k, top_p=top_p, temperature=temperature
                )  # [K, 1]
                assert samples.shape == torch.Size(
                    (self.args.n_codebooks, 1)
                ), f"samples.shape: {samples.shape}"
                if cur_num_gen < self.args.n_codebooks - 1:
                    for jj in range(1, self.args.n_codebooks - cur_num_gen):
                        samples[-jj, 0] = self.args.empty_token

                if (
                    samples[0, 0] == eog_inference
                    or torch.argmax(logits[0], dim=-1) == eog_inference
                    or y_input.shape[1] > x_lens[0] * (self.args.encodec_sr // 5)
                ):  # last one means y is already too long, shouldn't happen, but put it here
                    samples[0, 0] = eog_inference
                    codebook_eog[0] = True
                ##################### silence repetition handling #####################
                if samples[0, 0] in silence_tokens and samples[0, 0] == prev_token:
                    consec_silence_count += 1
                else:
                    consec_silence_count = 0
                prev_token = samples[0, 0]
                ##################### silence repetition handling #####################
                return samples, codebook_eog, prev_token, consec_silence_count
            else:
                assert (
                    sum(codebook_eog[i] for i in range(n_eog)) == n_eog
                ), f"codebook_eog: {codebook_eog}, but n_eog: {n_eog}"
                logits_adjust = logits
                for jj in range(n_eog + 1, self.args.n_codebooks):
                    logits_adjust[jj][eog_inference] = -10000
                    logits_adjust[jj][self.args.empty_token] = -10000
                samples = topk_sampling(
                    logits_adjust, top_k=top_k, top_p=top_p, temperature=temperature
                )  # [K, 1]
                for jj in range(n_eog):
                    samples[jj, 0] = self.args.empty_token
                samples[n_eog, 0] = eog_inference
                codebook_eog[n_eog] = True
                return samples, codebook_eog, prev_token, consec_silence_count

        while True:
            y_out, present = self.dec_forward(
                x_input,
                x_lens,
                x_attention_mask,
                x_padding_mask,
                y_input,
                new_y_lens,
                y_attention_mask,
                y_padding_mask,
                past=past,
            )
            if past != None:
                past = (
                    torch.cat([past, present.to(past.dtype)], dim=-2)
                    if past.ndim > 3
                    else present.to(past.dtype)
                )

            y_out = y_out[:, -1:]  # only take the last token
            logits = torch.stack(
                [self.predict_layer[i](y_out) for i in range(self.args.n_codebooks)],
                dim=1,
            )  # [B K S card], B==S==1, so [1 K 1 card]
            logits = logits.squeeze(0).squeeze(1)  # [K card]
            assert logits.shape == torch.Size(
                (self.args.n_codebooks, self.n_audio_tokens[0])
            ), f"{logits.shape}"

            n_eog = sum(codebook_eog)
            assert n_eog < self.args.n_codebooks
            if (
                self.args.eos > 0
            ):  # if we are using end-of-sentence token (which is used by default), eog shouldn't be used here, as there is no masked spans
                for jj in range(self.args.n_codebooks):
                    logits[jj][self.args.eog] = -10000.0

            samples, codebook_eog, prev_token, consec_silence_count = sample_helper(
                n_eog,
                logits,
                codebook_eog,
                top_k,
                top_p,
                temperature,
                prev_token,
                consec_silence_count,
                stop_repetition,
                silence_tokens,
                cur_num_gen,
            )

            cur_num_gen += 1
            cur_generated.append(samples.squeeze(-1))  # [K,1] -> [K]

            # samples.shape is [K,1]
            # ge samples_emb
            samples_emb = torch.stack(
                [
                    self.audio_embedding[k](samples[k])
                    for k in range(self.args.n_codebooks)
                ],
                dim=0,
            )  # [K,1,D]
            samples_emb = samples_emb.sum(dim=0, keepdim=True)  # [1,1,D]

            if (
                sum(codebook_eog) == self.args.n_codebooks
            ):  # generation for the current span is done
                codebook_eog = [False] * self.args.n_codebooks
                num_gen.append(cur_num_gen)
                cur_num_gen = 0
                generated.append(cur_generated)
                cur_generated = []
                break
            else:
                assert samples_emb.shape == torch.Size(
                    (1, 1, self.args.d_model)
                ), f"samples_emb.shape: {samples_emb.shape}"

            embedded_y = torch.cat([embedded_y, samples_emb], dim=1)
            y_input = self.audio_positional_embedding(embedded_y)  # [B T D]
            # make attention mask and padding mask
            y_attention_mask = (
                torch.triu(torch.ones(y_input.shape[1], y_input.shape[1]), diagonal=1)
                .bool()
                .to(y.device)
            )
            new_y_lens = torch.LongTensor([y_input.shape[1]]).to(y.device)
            y_padding_mask = torch.full((1, new_y_lens[0]), False).to(y.device)

        assert len(generated) == 1, f"len(generated): {len(generated)}"

        # revert the pattern
        flatten_gen = []
        for l, orig_span in enumerate(generated):
            span = torch.stack(orig_span, dim=0)  # [T, K]
            span = span.transpose(1, 0)  # [K, T]
            assert span.shape[0] == self.args.n_codebooks, span.shape
            unshifted_span = []
            for j, s in enumerate(span):
                start_from = j
                end_at = -(self.args.n_codebooks - start_from)
                unshifted_span.append(s[start_from:end_at])
            unshifted_span = torch.stack(unshifted_span, dim=0)

            assert (
                unshifted_span.shape[1] == num_gen[l] - self.args.n_codebooks
            ), f"len(unshifted_spans[0]): {len(unshifted_span[0])}, num_gen[l]: {num_gen[l]}"

            flatten_gen.append(unshifted_span)
        assert len(flatten_gen) == 1, len(flatten_gen)

        # combine
        res = [y[0], flatten_gen[0]]
        res = torch.cat(res, dim=1).unsqueeze(0)  # [K, new_t] -> [1, K, new_T]

        expected_y_len = y_len + sum([item - self.args.n_codebooks for item in num_gen])
        assert res.shape == torch.Size(
            (1, self.args.n_codebooks, expected_y_len)
        ), f"res.shape: {res.shape}, expected_y_len: {expected_y_len}. y_len + sum([item - self.args.n_codebooks for item in num_gen]): {y_len} + {sum([item - self.args.n_codebooks for item in num_gen])}"

        if self.args.special_first:
            res = res - int(self.args.n_special)
            flatten_gen = flatten_gen - int(self.args.n_special)

        return res, flatten_gen[0].unsqueeze(0)

    def inference_tts_batch(
        self,
        x: torch.Tensor,
        x_lens: torch.Tensor,
        y: torch.Tensor,
        top_k: int = -100,
        top_p: float = 1.0,
        temperature: float = 1.0,
        stop_repetition: int = 3,
        kvcache: int = 1,
        batch_size: int = 5,
        silence_tokens: list[int] = [1388, 1898, 131],
        *kargs,
    ) -> torch.Tensor:
        """
        have a batch size when forward passing, but they are equivalant to same example but different random seed, therefore as long as one example generated eog, we can drop all other samlpes
        different from inference_tts, this implementation uses kvcache, which should have significant speed up
        Args:
          x:
            A 2-D tensor of shape (1, L).
          x_lens:
            A 1-D tensor of shape (1,). It contains the number of tokens in `x`
            before padding.
          y:
            A 3-D tensor of shape (1, T, K).
          top_k: (`optional`) int
            The number of highest probability tokens to keep for top-k-filtering. Default to -100.
          top_p: (`optional`) float
            For Neucleus sampling
          temperature: (`optional`) float
            The value used to module the next token probabilities. Must be strictly positive. Default to 1.0.
        """
        eog_inference = self.args.eos if self.args.eos > 0 else self.args.eog
        assert x.ndim == 2, x.shape
        assert x_lens.ndim == 1, x_lens.shape
        assert y.ndim == 3, y.shape
        if self.args.special_first:
            y = y + int(self.args.n_special)
        y = y.transpose(2, 1)  # [1,T,K] -> [1,K,T]
        assert (
            y.shape[0] == 1 and y.shape[1] == self.args.n_codebooks
        ), y.shape  # there is no padding

        # make x attention mask and x_input
        x_attention_mask = (
            torch.triu(torch.ones(x.shape[1], x.shape[1]), diagonal=1)
            .bool()
            .to(x.device)
        )
        # x_attention_mask = torch.zeros(x.shape[1], x.shape[1]).bool().to(x.device)
        x_input = self.text_embedding(x)
        x_input = self.text_positional_embedding(x_input)

        y_len = y.shape[2]
        y_lens = torch.LongTensor([y_len]).to(y.device)

        # rearrange y, we don't add eog to the end, this doesn't actually do anything in the tts scenario
        rearranged_y = [[y[0]]]
        assert rearranged_y[0][0].shape[0] == self.args.n_codebooks, rearranged_y[0][
            0
        ].shape

        # shift y to create the delayed pattern
        shifted_y, patterns = self.shift(
            rearranged_y
        )  # each element [K S], patterns is not used, as we directly use the original input y
        assert shifted_y[0][0].shape[0] == self.args.n_codebooks, shifted_y[0][0].shape
        assert len(shifted_y[0]) == 1, len(shifted_y[0])

        # below is different from forward or inference
        # where we cut this shifted part
        shifted_y[0][0] = shifted_y[0][0][:, : -(self.args.n_codebooks - 1)]
        assert (
            not (
                shifted_y[0][0][self.args.n_codebooks :] == self.args.empty_token
            ).any()
            and not (shifted_y[0][0][self.args.n_codebooks :] == self.args.eog).any()
        ), shifted_y[0][0]

        # next section in inference is insert mask at the intersection of each tensor in a sample, but we don't need to do that
        # next section is concate tensors of each sample to one tensor, which we also don't need
        cated_y = shifted_y[0][0].unsqueeze(-1)  # [K,S]->[K,S,B]
        new_y_lens = torch.LongTensor([cated_y.shape[1]]).to(cated_y.device)
        assert cated_y.shape == torch.Size((self.args.n_codebooks, cated_y.shape[1], 1))
        assert not (cated_y == self.args.audio_pad_token).any(), cated_y

        # replace tokens in y with the embeddings, add sum codebooks up
        embedded_y = torch.stack(
            [self.audio_embedding[k](cated_y[k]) for k in range(self.args.n_codebooks)],
            dim=0,
        )  # [K, S, B, D]
        assert embedded_y.shape[0] == self.args.n_codebooks, embedded_y.shape
        assert embedded_y.shape[-1] == self.args.d_model, embedded_y.shape
        embedded_y = embedded_y.sum(dim=0)  # [K,S,B,D]->[S,B,D]
        embedded_y = embedded_y.transpose(1, 0)  # [S,B,D]->[B,S,D]

        # positional embedding
        y_input = self.audio_positional_embedding(embedded_y)

        # make attention mask and padding mask
        y_attention_mask = (
            torch.triu(torch.ones(y_input.shape[1], y_input.shape[1]), diagonal=1)
            .bool()
            .to(y.device)
        )

        x_padding_mask = torch.full((1, x_lens[0]), False).to(x.device)
        y_padding_mask = torch.full((1, new_y_lens[0]), False).to(y.device)

        # entering the generation stage
        # starting from line 708
        codebook_eog = [False] * self.args.n_codebooks
        generated = []  # doesn't contain any empty token, contain eog
        cur_generated = [[] for _ in range(batch_size)]
        # say 0 is empty, 4 is eog
        # tensor([[ 1,  2,  3,  4,  0,  0],
        #         [ 0,  1,  2,  3,  4,  0],
        #         [ 0,  0,  1,  2,  3,  4]])
        num_gen = []
        cur_num_gen = 0
        ##################### silence repetition handling #####################
        ##################### silence repetition handling #####################
        logging.info(
            f"silence tokens: {silence_tokens}, note that if you are not using the pretrained encodec 6f79c6a8, make sure you specified it yourself, rather than using the default"
        )
        consec_silence_counts = [0 for _ in range(batch_size)]
        prev_tokens = [None for _ in range(batch_size)]
        ##################### silence repetition handling #####################
        ##################### silence repetition handling #####################

        # prepare the cache placeholder
        # n_layers, 2, bsz, num_heads, src_len, head_dim
        past = (
            torch.ones(
                [self.args.num_decoder_layers, 2, x.shape[0]],
                device=x.device,
                dtype=torch.float32,
            )
            if kvcache
            else None
        )
        # logging.info(f"number of decoder layers: {self.args.num_decoder_layers}")
        # logging.info(f"number of decoder layers: {self.args.num_decoder_layers}")
        # logging.info(f"number of decoder layers: {self.args.num_decoder_layers}")
        keep = None  # NOTE: this very important, tells which sample to keep

        def sample_helper(
            n_eog,
            logits,
            codebook_eog,
            top_k,
            top_p,
            temperature,
            prev_tokens,
            consec_silence_counts,
            stop_repetition,
            silence_tokens,
            cur_num_gen,
            keep,
        ):
            if n_eog == 0:
                logits_adjust = logits
                for jj in range(1, self.args.n_codebooks):
                    logits_adjust[:, jj, eog_inference] = -10000
                    logits_adjust[:, jj, self.args.empty_token] = -10000
                if (
                    cur_num_gen <= self.args.encodec_sr // 5
                ):  # this shouldn't happen, but just in case the model stopped too early
                    logits_adjust[:, :, eog_inference] = -10000
                ##################### silence repetition handling #####################
                for b in range(batch_size):
                    prev_token = prev_tokens[b]
                    consec_silence_count = consec_silence_counts[b]
                    if (
                        stop_repetition > 0
                        and prev_token in silence_tokens
                        and consec_silence_count > stop_repetition
                    ):
                        if logits_adjust[b, 0, prev_token] < 0:
                            logits_adjust[b, 0, prev_token] = logits_adjust[
                                b, 0, prev_token
                            ] * (consec_silence_count - (stop_repetition - 1))
                        else:
                            logits_adjust[b, 0, prev_token] = logits_adjust[
                                b, 0, prev_token
                            ] / (consec_silence_count - (stop_repetition - 1))
                ##################### silence repetition handling #####################
                samples = topk_sampling(
                    logits_adjust.reshape(
                        batch_size * self.args.n_codebooks, logits_adjust.shape[-1]
                    ),
                    top_k=top_k,
                    top_p=top_p,
                    temperature=temperature,
                )  # [B*K, 1]
                samples = samples.reshape(batch_size, self.args.n_codebooks, 1)
                assert samples.shape == torch.Size(
                    (batch_size, self.args.n_codebooks, 1)
                ), f"samples.shape: {samples.shape}"
                for b in range(batch_size):
                    if cur_num_gen < self.args.n_codebooks - 1:
                        for jj in range(1, self.args.n_codebooks - cur_num_gen):
                            samples[b, -jj, 0] = self.args.empty_token

                    if (
                        samples[b, 0, 0] == eog_inference
                        or torch.argmax(logits[b, 0], dim=-1) == eog_inference
                        or y_input.shape[1] > x_lens[b] * (self.args.encodec_sr // 5)
                    ):  # last one means y is already too long, shouldn't happen, but put it here
                        samples[b, 0, 0] = eog_inference
                        codebook_eog[0] = True
                        keep = b  # NOTE keep is a very important variable, we only return this one, note that if eog shows up in two samples, keep will be overwritten by the later one (or the last one)
                    ##################### silence repetition handling #####################
                    if (
                        samples[b, 0, 0] in silence_tokens
                        and samples[b, 0, 0] == prev_tokens[b]
                    ):
                        consec_silence_counts[b] += 1
                    else:
                        consec_silence_counts[b] = 0
                    prev_tokens[b] = samples[b, 0, 0]
                ##################### silence repetition handling #####################
                return samples, codebook_eog, prev_tokens, consec_silence_counts, keep
            else:
                assert (
                    sum(codebook_eog[i] for i in range(n_eog)) == n_eog
                ), f"codebook_eog: {codebook_eog}, but n_eog: {n_eog}"
                logits_adjust = logits
                for jj in range(n_eog + 1, self.args.n_codebooks):
                    logits_adjust[:, jj, eog_inference] = -10000
                    logits_adjust[:, jj, self.args.empty_token] = -10000
                samples = topk_sampling(
                    logits_adjust.reshape(
                        batch_size * self.args.n_codebooks, logits_adjust.shape[-1]
                    ),
                    top_k=top_k,
                    top_p=top_p,
                    temperature=temperature,
                )  # [B, K, 1]
                samples = samples.reshape(batch_size, self.args.n_codebooks, 1)
                for jj in range(n_eog):
                    samples[keep, jj, 0] = self.args.empty_token
                samples[keep, n_eog, 0] = eog_inference
                codebook_eog[n_eog] = True
                return samples, codebook_eog, prev_tokens, consec_silence_counts, keep

        while True:
            # if cur_num_gen > 0, should have everything in kvcache, so only pass in the last token
            # in the first generation step, we repeat each tensor to make their first dimension of length the batch size
            if cur_num_gen == 0:
                assert x_input.ndim == 3 and x_input.shape[0] == 1, x_input.shape
                assert (
                    x_padding_mask.ndim == 2 and x_padding_mask.shape[0] == 1
                ), x_padding_mask.shape
                assert (
                    y_input.ndim == 3
                    and y_input.shape[0] == 1
                    and y_input.shape[1] == new_y_lens[0]
                ), y_input.shape
                assert (
                    embedded_y.ndim == 3
                    and embedded_y.shape[0] == 1
                    and embedded_y.shape[1] == new_y_lens[0]
                ), embedded_y.shape
                x_input = x_input.repeat(batch_size, 1, 1)
                x_lens = x_lens.repeat(batch_size)
                # x_attention_mask = x_attention_mask.repeat(batch_size, 1, 1) # no need to work with attention mask, it doesn't contain batch dimension
                x_padding_mask = x_padding_mask.repeat(batch_size, 1)
                y_input = y_input.repeat(batch_size, 1, 1)
                new_y_lens = new_y_lens.repeat(batch_size)
                # y_attention_mask = y_attention_mask.repeat(batch_size, 1, 1) # no need to work with attention mask, it doesn't contain batch dimension
                y_padding_mask = y_padding_mask.repeat(batch_size, 1)
                embedded_y = embedded_y.repeat(
                    batch_size, 1, 1
                )  # will be used to concat with newly generated token embedding
                past = past.repeat(1, 1, batch_size) if past != None else None
            else:
                assert (
                    x_input.shape[0] == batch_size
                    and x_padding_mask.shape[0] == batch_size
                    and y_input.shape[0] == batch_size
                    and new_y_lens.shape[0] == batch_size
                ), f"x_input.shape: {x_input.shape}, x_padding_mask.shape: {x_padding_mask.shape}, y_input.shape: {y_input.shape}, new_y_lens.shape: {new_y_lens.shape}"
            y_out, present = self.dec_forward(
                x_input,
                x_lens,
                x_attention_mask,
                x_padding_mask,
                y_input,
                new_y_lens,
                y_attention_mask,
                y_padding_mask,
                past=past,
            )
            if past != None:
                past = (
                    torch.cat([past, present.to(past.dtype)], dim=-2)
                    if past.ndim > 3
                    else present.to(past.dtype)
                )

            # if no eog emerges, y_out should have batch size of batch_size
            if sum(codebook_eog) == 0:
                assert y_out.shape[0] == batch_size and y_out.ndim == 3, y_out.shape
            y_out = y_out[:, -1:]  # only take the last token
            logits = torch.stack(
                [self.predict_layer[i](y_out) for i in range(self.args.n_codebooks)],
                dim=1,
            )  # [B K S card], S==1, so [B K 1 card]
            logits = logits.squeeze(2)  # [B K card]
            assert logits.shape == torch.Size(
                (batch_size, self.args.n_codebooks, self.n_audio_tokens[0])
            ), f"{logits.shape}"

            n_eog = sum(codebook_eog)
            if self.args.eos > 0:
                for jj in range(self.args.n_codebooks):
                    logits[:, jj, self.args.eog] = -10000.0
            samples, codebook_eog, prev_tokens, consec_silence_counts, keep = (
                sample_helper(
                    n_eog,
                    logits,
                    codebook_eog,
                    top_k,
                    top_p,
                    temperature,
                    prev_tokens,
                    consec_silence_counts,
                    stop_repetition,
                    silence_tokens,
                    cur_num_gen,
                    keep,
                )
            )

            cur_num_gen += 1
            if sum(codebook_eog) == 0:  # no eog yet, keep batch_size of samples
                assert keep == None
                for b in range(batch_size):
                    cur_generated[b].append(samples[b].squeeze(-1))
            elif sum(codebook_eog) == 1:  # the first eog just showed up in this step
                assert keep != None
                cur_generated = cur_generated[keep]
                cur_generated.append(samples[keep].squeeze(-1))
            else:  # we are generating the rest eogs for the 'keep' sample
                cur_generated.append(samples[keep].squeeze(-1))

            # samples.shape is [K,1]
            # ge samples_emb
            samples_emb = torch.stack(
                [
                    self.audio_embedding[k](samples[:, k])
                    for k in range(self.args.n_codebooks)
                ],
                dim=1,
            )  # [B, K,1,D]
            assert samples_emb.shape == torch.Size(
                [batch_size, self.args.n_codebooks, 1, self.args.d_model]
            )
            samples_emb = samples_emb.sum(dim=1, keepdim=False)  # [B,1,D]
            if (
                sum(codebook_eog) == self.args.n_codebooks
            ):  # generation for the current span is done
                codebook_eog = [False] * self.args.n_codebooks
                num_gen.append(cur_num_gen)
                cur_num_gen = 0
                generated.append(cur_generated)
                cur_generated = [[] for _ in range(batch_size)]
                break
            else:
                assert samples_emb.shape == torch.Size(
                    (batch_size, 1, self.args.d_model)
                ), f"samples_emb.shape: {samples_emb.shape}"

            embedded_y = torch.cat([embedded_y, samples_emb], dim=1)
            y_input = self.audio_positional_embedding(embedded_y)  # [B T D]
            # make attention mask and padding mask
            y_attention_mask = (
                torch.triu(torch.ones(y_input.shape[1], y_input.shape[1]), diagonal=1)
                .bool()
                .to(y.device)
            )
            new_y_lens = (
                torch.LongTensor([y_input.shape[1]]).to(y.device).repeat(batch_size)
            )
            y_padding_mask = torch.full((batch_size, new_y_lens[0]), False).to(y.device)

        assert len(generated) == 1, f"len(generated): {len(generated)}"

        # revert the pattern
        flatten_gen = []
        for l, orig_span in enumerate(generated):
            span = torch.stack(orig_span, dim=0)  # [T, K]
            span = span.transpose(1, 0)  # [K, T]
            assert span.shape[0] == self.args.n_codebooks, span.shape
            unshifted_span = []
            for j, s in enumerate(span):
                start_from = j
                end_at = -(self.args.n_codebooks - start_from)
                unshifted_span.append(s[start_from:end_at])
            unshifted_span = torch.stack(unshifted_span, dim=0)

            assert (
                unshifted_span.shape[1] == num_gen[l] - self.args.n_codebooks
            ), f"len(unshifted_spans[0]): {len(unshifted_span[0])}, num_gen[l]: {num_gen[l]}"

            flatten_gen.append(unshifted_span)
        assert len(flatten_gen) == 1, len(flatten_gen)

        # combine
        res = [y[0], flatten_gen[0]]
        res = torch.cat(res, dim=1).unsqueeze(0)  # [K, new_t] -> [1, K, new_T]

        expected_y_len = y_len + sum([item - self.args.n_codebooks for item in num_gen])
        assert res.shape == torch.Size(
            (1, self.args.n_codebooks, expected_y_len)
        ), f"res.shape: {res.shape}, expected_y_len: {expected_y_len}. y_len + sum([item - self.args.n_codebooks for item in num_gen]): {y_len} + {sum([item - self.args.n_codebooks for item in num_gen])}"

        if self.args.special_first:
            res = res - int(self.args.n_special)
            flatten_gen = flatten_gen - int(self.args.n_special)

        return res, flatten_gen[0].unsqueeze(0)