File size: 10,830 Bytes
685ecb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
from typing import Optional, Tuple
import torch
import torch.nn as nn


class SiglipVisionConfig:

    def __init__(
        self,
        hidden_size=768,
        intermediate_size=3072,
        num_hidden_layers=12,
        num_attention_heads=12,
        num_channels=3,
        image_size=224,
        patch_size=16,
        layer_norm_eps=1e-6,
        attention_dropout=0.0,
        num_image_tokens: int = None,
        **kwargs,
    ):
        super().__init__()

        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.num_channels = num_channels
        self.patch_size = patch_size
        self.image_size = image_size
        self.attention_dropout = attention_dropout
        self.layer_norm_eps = layer_norm_eps
        self.num_image_tokens = num_image_tokens


class SiglipVisionEmbeddings(nn.Module):
    def __init__(self, config: SiglipVisionConfig):
        super().__init__()
        self.config = config
        self.embed_dim = config.hidden_size
        self.image_size = config.image_size
        self.patch_size = config.patch_size

        self.patch_embedding = nn.Conv2d(
            in_channels=config.num_channels,
            out_channels=self.embed_dim,
            kernel_size=self.patch_size,
            stride=self.patch_size,
            padding="valid",  # This indicates no padding is added
        )

        self.num_patches = (self.image_size // self.patch_size) ** 2
        self.num_positions = self.num_patches
        self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
        self.register_buffer(
            "position_ids",
            torch.arange(self.num_positions).expand((1, -1)),
            persistent=False,
        )

    def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
        _, _, height, width = (
            pixel_values.shape
        )  # [Batch_Size, Channels, Height, Width]
        # Convolve the `patch_size` kernel over the image, with no overlapping patches since the stride is equal to the kernel size
        # The output of the convolution will have shape [Batch_Size, Embed_Dim, Num_Patches_H, Num_Patches_W]
        # where Num_Patches_H = height // patch_size and Num_Patches_W = width // patch_size
        patch_embeds = self.patch_embedding(pixel_values)
        # [Batch_Size, Embed_Dim, Num_Patches_H, Num_Patches_W] -> [Batch_Size, Embed_Dim, Num_Patches]
        # where Num_Patches = Num_Patches_H * Num_Patches_W
        embeddings = patch_embeds.flatten(2)
        # [Batch_Size, Embed_Dim, Num_Patches] -> [Batch_Size, Num_Patches, Embed_Dim]
        embeddings = embeddings.transpose(1, 2)
        # Add position embeddings to each patch. Each positional encoding is a vector of size [Embed_Dim]
        embeddings = embeddings + self.position_embedding(self.position_ids)
        # [Batch_Size, Num_Patches, Embed_Dim]
        return embeddings


class SiglipAttention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(self, config):
        super().__init__()
        self.config = config
        self.embed_dim = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.embed_dim // self.num_heads
        self.scale = self.head_dim**-0.5  # Equivalent to 1 / sqrt(self.head_dim)
        self.dropout = config.attention_dropout

        self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
        self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
        self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
        self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)

    def forward(
        self,
        hidden_states: torch.Tensor,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:

        # hidden_states: [Batch_Size, Num_Patches, Embed_Dim]
        batch_size, seq_len, _ = hidden_states.size()
        # query_states: [Batch_Size, Num_Patches, Embed_Dim]
        query_states = self.q_proj(hidden_states)
        # key_states: [Batch_Size, Num_Patches, Embed_Dim]
        key_states = self.k_proj(hidden_states)
        # value_states: [Batch_Size, Num_Patches, Embed_Dim]
        value_states = self.v_proj(hidden_states)
        # query_states: [Batch_Size, Num_Heads, Num_Patches, Head_Dim]
        query_states = query_states.view(
            batch_size, seq_len, self.num_heads, self.head_dim
        ).transpose(1, 2)

        key_states = key_states.view(
            batch_size, seq_len, self.num_heads, self.head_dim
        ).transpose(1, 2)

        value_states = value_states.view(
            batch_size, seq_len, self.num_heads, self.head_dim
        ).transpose(1, 2)
        # Calculate the attention using the formula Q * K^T / sqrt(d_k). attn_weights: [Batch_Size, Num_Heads, Num_Patches, Num_Patches]
        attn_weights = (
            torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale
        )

        if attn_weights.size() != (batch_size, self.num_heads, seq_len, seq_len):
            raise ValueError(
                f"Attention weights should be of size {(batch_size, self.num_heads, seq_len, seq_len)}, but is"
                f" {attn_weights.size()}"
            )

        # Apply the softmax row-wise. attn_weights: [Batch_Size, Num_Heads, Num_Patches, Num_Patches]
        attn_weights = nn.functional.softmax(
            attn_weights, dim=-1, dtype=torch.float32
        ).to(query_states.dtype)
        # Apply dropout only during training
        attn_weights = nn.functional.dropout(
            attn_weights, p=self.dropout, training=self.training
        )
        # Multiply the attention weights by the value states. attn_output: [Batch_Size, Num_Heads, Num_Patches, Head_Dim]
        attn_output = torch.matmul(attn_weights, value_states)

        if attn_output.size() != (batch_size, self.num_heads, seq_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(batch_size, self.num_heads, seq_len, self.head_dim)}, but is"
                f" {attn_output.size()}"
            )
        # [Batch_Size, Num_Heads, Num_Patches, Head_Dim] -> [Batch_Size, Num_Patches, Num_Heads, Head_Dim]
        attn_output = attn_output.transpose(1, 2).contiguous()
        # [Batch_Size, Num_Patches, Num_Heads, Head_Dim] -> [Batch_Size, Num_Patches, Embed_Dim]
        attn_output = attn_output.reshape(batch_size, seq_len, self.embed_dim)
        # [Batch_Size, Num_Patches, Embed_Dim]
        attn_output = self.out_proj(attn_output)

        return attn_output, attn_weights


class SiglipMLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
        self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        # [Batch_Size, Num_Patches, Embed_Dim] -> [Batch_Size, Num_Patches, Intermediate_Size]
        hidden_states = self.fc1(hidden_states)
        # hidden_states: [Batch_Size, Num_Patches, Intermediate_Size]
        hidden_states = nn.functional.gelu(hidden_states, approximate="tanh")
        # [Batch_Size, Num_Patches, Intermediate_Size] -> [Batch_Size, Num_Patches, Embed_Dim]
        hidden_states = self.fc2(hidden_states)

        return hidden_states


class SiglipEncoderLayer(nn.Module):
    def __init__(self, config: SiglipVisionConfig):
        super().__init__()
        self.embed_dim = config.hidden_size
        self.self_attn = SiglipAttention(config)
        self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
        self.mlp = SiglipMLP(config)
        self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)

    # Ignore copy
    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        # residual: [Batch_Size, Num_Patches, Embed_Dim]
        residual = hidden_states
        # [Batch_Size, Num_Patches, Embed_Dim] -> [Batch_Size, Num_Patches, Embed_Dim]
        hidden_states = self.layer_norm1(hidden_states)
        # [Batch_Size, Num_Patches, Embed_Dim] -> [Batch_Size, Num_Patches, Embed_Dim]
        hidden_states, _ = self.self_attn(hidden_states=hidden_states)
        # [Batch_Size, Num_Patches, Embed_Dim]
        hidden_states = residual + hidden_states
        # residual: [Batch_Size, Num_Patches, Embed_Dim]
        residual = hidden_states
        # [Batch_Size, Num_Patches, Embed_Dim] -> [Batch_Size, Num_Patches, Embed_Dim]
        hidden_states = self.layer_norm2(hidden_states)
        # [Batch_Size, Num_Patches, Embed_Dim] -> [Batch_Size, Num_Patches, Embed_Dim]
        hidden_states = self.mlp(hidden_states)
        # [Batch_Size, Num_Patches, Embed_Dim]
        hidden_states = residual + hidden_states

        return hidden_states


class SiglipEncoder(nn.Module):
    def __init__(self, config: SiglipVisionConfig):
        super().__init__()
        self.config = config
        self.layers = nn.ModuleList(
            [SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)]
        )

    # Ignore copy
    def forward(self, inputs_embeds: torch.Tensor) -> torch.Tensor:
        # inputs_embeds: [Batch_Size, Num_Patches, Embed_Dim]
        hidden_states = inputs_embeds

        for encoder_layer in self.layers:
            # [Batch_Size, Num_Patches, Embed_Dim] -> [Batch_Size, Num_Patches, Embed_Dim]
            hidden_states = encoder_layer(hidden_states)

        return hidden_states


class SiglipVisionTransformer(nn.Module):
    def __init__(self, config: SiglipVisionConfig):
        super().__init__()
        self.config = config
        embed_dim = config.hidden_size

        self.embeddings = SiglipVisionEmbeddings(config)
        self.encoder = SiglipEncoder(config)
        self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)

    def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
        # pixel_values: [Batch_Size, Channels, Height, Width] -> [Batch_Size, Num_Patches, Embed_Dim]
        hidden_states = self.embeddings(pixel_values)

        last_hidden_state = self.encoder(inputs_embeds=hidden_states)

        last_hidden_state = self.post_layernorm(last_hidden_state)

        return last_hidden_state


class SiglipVisionModel(nn.Module):

    def __init__(self, config: SiglipVisionConfig):
        super().__init__()
        self.config = config
        self.vision_model = SiglipVisionTransformer(config)

    def forward(self, pixel_values) -> Tuple:
        # [Batch_Size, Channels, Height, Width] -> [Batch_Size, Num_Patches, Embed_Dim]
        return self.vision_model(pixel_values=pixel_values)