File size: 16,320 Bytes
685ecb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
import torch
from torch import nn
from typing import Optional, Tuple
import math
from src.model.modules.kv_cache import KVCache


class GemmaConfig:

    def __init__(
        self,
        vocab_size,
        hidden_size,
        intermediate_size,
        num_hidden_layers,
        num_attention_heads,
        num_key_value_heads,
        head_dim=256,
        max_position_embeddings=8192,
        rms_norm_eps=1e-6,
        rope_theta=10000.0,
        attention_bias=False,
        attention_dropout=0.0,
        pad_token_id=None,
        **kwargs,
    ):
        super().__init__()
        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.head_dim = head_dim
        self.num_key_value_heads = num_key_value_heads
        self.rms_norm_eps = rms_norm_eps
        self.rope_theta = rope_theta
        self.attention_bias = attention_bias
        self.attention_dropout = attention_dropout
        self.pad_token_id = pad_token_id


class GemmaRMSNorm(nn.Module):
    def __init__(self, dim: int, eps: float = 1e-6):
        super().__init__()
        self.eps = eps
        self.weight = nn.Parameter(torch.zeros(dim))

    def _norm(self, x):
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)

    def forward(self, x):
        output = self._norm(x.float())
        # Llama does x.to(float16) * w whilst Gemma is (x * w).to(float16)
        # See https://github.com/huggingface/transformers/pull/29402
        output = output * (1.0 + self.weight.float())
        return output.type_as(x)


class GemmaRotaryEmbedding(nn.Module):
    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
        super().__init__()

        self.dim = dim  # it is set to the head_dim
        self.max_position_embeddings = max_position_embeddings
        self.base = base

        # Calculate the theta according to the formula theta_i = base^(2i/dim) where i = 0, 1, 2, ..., dim // 2
        inv_freq = 1.0 / (
            self.base
            ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float() / self.dim)
        )
        self.register_buffer("inv_freq", tensor=inv_freq, persistent=False)

    @torch.no_grad()
    def forward(self, x, position_ids, seq_len=None):
        # x: [bs, num_attention_heads, seq_len, head_size]
        self.inv_freq.to(x.device)
        # Copy the inv_freq tensor for batch in the sequence
        # inv_freq_expanded: [Batch_Size, Head_Dim // 2, 1]
        inv_freq_expanded = (
            self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
        )
        # position_ids_expanded: [Batch_Size, 1, Seq_Len]
        position_ids_expanded = position_ids[:, None, :].float()
        device_type = x.device.type
        device_type = (
            device_type
            if isinstance(device_type, str) and device_type != "mps"
            else "cpu"
        )
        with torch.autocast(device_type=device_type, enabled=False):
            # Multiply each theta by the position (which is the argument of the sin and cos functions)
            # freqs: [Batch_Size, Head_Dim // 2, 1] @ [Batch_Size, 1, Seq_Len] --> [Batch_Size, Seq_Len, Head_Dim // 2]
            freqs = (
                inv_freq_expanded.float() @ position_ids_expanded.float()
            ).transpose(1, 2)
            # emb: [Batch_Size, Seq_Len, Head_Dim]
            emb = torch.cat((freqs, freqs), dim=-1)
            # cos, sin: [Batch_Size, Seq_Len, Head_Dim]
            cos = emb.cos()
            sin = emb.sin()
        return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)


def rotate_half(x):
    # Build the [-x2, x1, -x4, x3, ...] tensor for the sin part of the positional encoding.
    x1 = x[..., : x.shape[-1] // 2]  # Takes the first half of the last dimension
    x2 = x[..., x.shape[-1] // 2 :]  # Takes the second half of the last dimension
    return torch.cat((-x2, x1), dim=-1)


def apply_rotary_pos_emb(q, k, cos, sin, unsqueeze_dim=1):
    cos = cos.unsqueeze(unsqueeze_dim)  # Add the head dimension
    sin = sin.unsqueeze(unsqueeze_dim)  # Add the head dimension
    # Apply the formula (34) of the Rotary Positional Encoding paper.
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed


class GemmaMLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.intermediate_size = config.intermediate_size
        self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)

    def forward(self, x):
        # Equivalent to:
        # y = self.gate_proj(x) # [Batch_Size, Seq_Len, Hidden_Size] -> [Batch_Size, Seq_Len, Intermediate_Size]
        # y = torch.gelu(y, approximate="tanh") # [Batch_Size, Seq_Len, Intermediate_Size]
        # j = self.up_proj(x) # [Batch_Size, Seq_Len, Hidden_Size] -> [Batch_Size, Seq_Len, Intermediate_Size]
        # z = y * j # [Batch_Size, Seq_Len, Intermediate_Size]
        # z = self.down_proj(z) # [Batch_Size, Seq_Len, Intermediate_Size] -> [Batch_Size, Seq_Len, Hidden_Size]
        return self.down_proj(
            nn.functional.gelu(self.gate_proj(x), approximate="tanh") * self.up_proj(x)
        )


def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None, :, :].expand(
        batch, num_key_value_heads, n_rep, slen, head_dim
    )
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)


class GemmaAttention(nn.Module):

    def __init__(self, config: GemmaConfig, layer_idx: Optional[int] = None):
        super().__init__()
        self.config = config
        self.layer_idx = layer_idx

        self.attention_dropout = config.attention_dropout
        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = config.head_dim
        self.num_key_value_heads = config.num_key_value_heads
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads
        self.max_position_embeddings = config.max_position_embeddings
        self.rope_theta = config.rope_theta
        self.is_causal = True

        assert self.hidden_size % self.num_heads == 0

        self.q_proj = nn.Linear(
            self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias
        )
        self.k_proj = nn.Linear(
            self.hidden_size,
            self.num_key_value_heads * self.head_dim,
            bias=config.attention_bias,
        )
        self.v_proj = nn.Linear(
            self.hidden_size,
            self.num_key_value_heads * self.head_dim,
            bias=config.attention_bias,
        )
        self.o_proj = nn.Linear(
            self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias
        )
        self.rotary_emb = GemmaRotaryEmbedding(
            self.head_dim,
            max_position_embeddings=self.max_position_embeddings,
            base=self.rope_theta,
        )

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        kv_cache: Optional[KVCache] = None,
        **kwargs,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        bsz, q_len, _ = hidden_states.size()  # [Batch_Size, Seq_Len, Hidden_Size]
        # [Batch_Size, Seq_Len, Num_Heads_Q * Head_Dim]
        query_states = self.q_proj(hidden_states)
        # [Batch_Size, Seq_Len, Num_Heads_KV * Head_Dim]
        key_states = self.k_proj(hidden_states)
        # [Batch_Size, Seq_Len, Num_Heads_KV * Head_Dim]
        value_states = self.v_proj(hidden_states)
        # [Batch_Size, Num_Heads_Q, Seq_Len, Head_Dim]
        query_states = query_states.view(
            bsz, q_len, self.num_heads, self.head_dim
        ).transpose(1, 2)
        # [Batch_Size, Num_Heads_KV, Seq_Len, Head_Dim]
        key_states = key_states.view(
            bsz, q_len, self.num_key_value_heads, self.head_dim
        ).transpose(1, 2)
        # [Batch_Size, Num_Heads_KV, Seq_Len, Head_Dim]
        value_states = value_states.view(
            bsz, q_len, self.num_key_value_heads, self.head_dim
        ).transpose(1, 2)

        # [Batch_Size, Seq_Len, Head_Dim], [Batch_Size, Seq_Len, Head_Dim]
        cos, sin = self.rotary_emb(value_states, position_ids, seq_len=None)
        # [Batch_Size, Num_Heads_Q, Seq_Len, Head_Dim], [Batch_Size, Num_Heads_KV, Seq_Len, Head_Dim]
        query_states, key_states = apply_rotary_pos_emb(
            query_states, key_states, cos, sin
        )

        if kv_cache is not None:
            key_states, value_states = kv_cache.update(
                key_states, value_states, self.layer_idx
            )

        # Repeat the key and values to match the number of heads of the query
        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)
        # Perform the calculation as usual, Q * K^T / sqrt(head_dim). Shape: [Batch_Size, Num_Heads_Q, Seq_Len_Q, Seq_Len_KV]
        attn_weights = torch.matmul(
            query_states, key_states.transpose(2, 3)
        ) / math.sqrt(self.head_dim)

        assert attention_mask is not None
        attn_weights = attn_weights + attention_mask

        # Apply the softmax
        # [Batch_Size, Num_Heads_Q, Seq_Len_Q, Seq_Len_KV]
        attn_weights = nn.functional.softmax(
            attn_weights, dim=-1, dtype=torch.float32
        ).to(query_states.dtype)
        # Apply the dropout
        attn_weights = nn.functional.dropout(
            attn_weights, p=self.attention_dropout, training=self.training
        )
        # Multiply by the values. [Batch_Size, Num_Heads_Q, Seq_Len_Q, Seq_Len_KV] x [Batch_Size, Num_Heads_KV, Seq_Len_KV, Head_Dim] -> [Batch_Size, Num_Heads_Q, Seq_Len_Q, Head_Dim]
        attn_output = torch.matmul(attn_weights, value_states)

        if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
                f" {attn_output.size()}"
            )
        # Make sure the sequence length is the second dimension. # [Batch_Size, Num_Heads_Q, Seq_Len_Q, Head_Dim] -> [Batch_Size, Seq_Len_Q, Num_Heads_Q, Head_Dim]
        attn_output = attn_output.transpose(1, 2).contiguous()
        # Concatenate all the heads together. [Batch_Size, Seq_Len_Q, Num_Heads_Q, Head_Dim] -> [Batch_Size, Seq_Len_Q, Num_Heads_Q * Head_Dim]
        attn_output = attn_output.view(bsz, q_len, -1)
        # Multiply by W_o. [Batch_Size, Seq_Len_Q, Hidden_Size]
        attn_output = self.o_proj(attn_output)

        return attn_output, attn_weights


class GemmaDecoderLayer(nn.Module):

    def __init__(self, config: GemmaConfig, layer_idx: int):
        super().__init__()
        self.hidden_size = config.hidden_size

        self.self_attn = GemmaAttention(config=config, layer_idx=layer_idx)

        self.mlp = GemmaMLP(config)
        self.input_layernorm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = GemmaRMSNorm(
            config.hidden_size, eps=config.rms_norm_eps
        )

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        kv_cache: Optional[KVCache] = None,
    ) -> Tuple[
        torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
    ]:
        residual = hidden_states
        # [Batch_Size, Seq_Len, Hidden_Size]
        hidden_states = self.input_layernorm(hidden_states)

        # [Batch_Size, Seq_Len, Hidden_Size]
        (
            hidden_states,
            _,
        ) = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            position_ids=position_ids,
            kv_cache=kv_cache,
        )
        # [Batch_Size, Seq_Len, Hidden_Size]
        hidden_states = residual + hidden_states

        # [Batch_Size, Seq_Len, Hidden_Size]
        residual = hidden_states
        # [Batch_Size, Seq_Len, Hidden_Size]
        hidden_states = self.post_attention_layernorm(hidden_states)
        # [Batch_Size, Seq_Len, Hidden_Size]
        hidden_states = self.mlp(hidden_states)
        # [Batch_Size, Seq_Len, Hidden_Size]
        hidden_states = residual + hidden_states

        return hidden_states


class GemmaModel(nn.Module):

    def __init__(self, config: GemmaConfig):
        super().__init__()
        self.config = config
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = nn.Embedding(
            config.vocab_size, config.hidden_size, self.padding_idx
        )
        self.layers = nn.ModuleList(
            [
                GemmaDecoderLayer(config, layer_idx)
                for layer_idx in range(config.num_hidden_layers)
            ]
        )
        self.norm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def get_input_embeddings(self):
        return self.embed_tokens

    # Ignore copy
    def forward(
        self,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        kv_cache: Optional[KVCache] = None,
    ) -> torch.FloatTensor:
        # [Batch_Size, Seq_Len, Hidden_Size]
        hidden_states = inputs_embeds
        # [Batch_Size, Seq_Len, Hidden_Size]
        normalizer = torch.tensor(
            self.config.hidden_size**0.5, dtype=hidden_states.dtype
        )
        hidden_states = hidden_states * normalizer

        for decoder_layer in self.layers:
            # [Batch_Size, Seq_Len, Hidden_Size]
            hidden_states = decoder_layer(
                hidden_states,
                attention_mask=attention_mask,
                position_ids=position_ids,
                kv_cache=kv_cache,
            )

        # [Batch_Size, Seq_Len, Hidden_Size]
        hidden_states = self.norm(hidden_states)

        # [Batch_Size, Seq_Len, Hidden_Size]
        return hidden_states


class GemmaForCausalLM(nn.Module):

    def __init__(self, config):
        super().__init__()
        self.config = config
        self.model = GemmaModel(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def tie_weights(self):
        self.lm_head.weight = self.model.embed_tokens.weight

    def forward(
        self,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        kv_cache: Optional[KVCache] = None,
    ) -> Tuple:

        # input_embeds: [Batch_Size, Seq_Len, Hidden_Size]
        # outputs: [Batch_Size, Seq_Len, Hidden_Size]
        outputs = self.model(
            attention_mask=attention_mask,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            kv_cache=kv_cache,
        )

        hidden_states = outputs
        logits = self.lm_head(hidden_states)
        logits = logits.float()

        return_data = {
            "logits": logits,
        }

        if kv_cache is not None:
            # Return the updated cache
            return_data["kv_cache"] = kv_cache

        return return_data