File size: 16,651 Bytes
e373289 c8c583c e373289 5164922 e373289 c8c583c e373289 c8c583c e373289 c8c583c e373289 c8c583c e373289 c8c583c e373289 c8c583c e373289 c8c583c e373289 c8c583c e373289 c8c583c e373289 c8c583c e373289 c8c583c e373289 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
import json
import os
import time
import uuid
import tempfile
from PIL import Image, ImageDraw, ImageFont
import gradio as gr
import base64
import mimetypes
from google import genai
from google.genai import types
def save_binary_file(file_name, data):
with open(file_name, "wb") as f:
f.write(data)
def generate(text, file_name, api_key, model="gemini-2.0-flash-exp"):
# Initialize client using provided api_key (or fallback to env variable)
client = genai.Client(api_key=(api_key.strip() if api_key and api_key.strip() != ""
else os.environ.get("GEMINI_API_KEY")))
try:
print("Uploading file to Gemini API...")
files = [ client.files.upload(file=file_name) ]
contents = [
types.Content(
role="user",
parts=[
types.Part.from_uri(
file_uri=files[0].uri,
mime_type=files[0].mime_type,
),
types.Part.from_text(text=text),
],
),
]
generate_content_config = types.GenerateContentConfig(
temperature=0, # Lower temperature for more consistent, conservative results
top_p=0.92,
max_output_tokens=8192,
response_modalities=["image", "text"],
response_mime_type="text/plain",
# Additional parameters to encourage subtle, natural results
safety_settings=[
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
}
]
)
text_response = ""
image_path = None
# Create a temporary file to potentially store image data
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
temp_path = tmp.name
print("Sending request to Gemini API...")
# Add a timeout to prevent indefinite waiting
start_time = time.time()
max_wait_time = 60 # Maximum wait time in seconds
try:
stream = client.models.generate_content_stream(
model=model,
contents=contents,
config=generate_content_config,
)
for chunk in stream:
# Check for timeout
if time.time() - start_time > max_wait_time:
print("Gemini API request timed out after", max_wait_time, "seconds")
break
if not chunk.candidates or not chunk.candidates[0].content or not chunk.candidates[0].content.parts:
continue
candidate = chunk.candidates[0].content.parts[0]
# Check for inline image data
if candidate.inline_data:
save_binary_file(temp_path, candidate.inline_data.data)
print(f"Smile enhancement image generated: {temp_path}")
image_path = temp_path
# If an image is found, we assume that is the desired output.
break
else:
# Accumulate text response if no inline_data is present.
text_response += chunk.text + "\n"
print("Received text response from Gemini API")
except Exception as e:
print(f"Error during content generation: {str(e)}")
# Continue with the function, returning empty responses
except Exception as e:
print(f"Error in Gemini API setup: {str(e)}")
return None, f"Error: {str(e)}"
finally:
# Always clean up files
try:
if 'files' in locals() and files:
del files
except:
pass
return image_path, text_response
def assess_image_quality(original_image, enhanced_image):
"""
Assesses the quality of the enhanced image based on specific criteria.
Returns a tuple of (is_acceptable, feedback_message)
"""
try:
# Check if enhanced image exists
if enhanced_image is None:
return False, "No enhanced image generated"
# Image dimension checks
if enhanced_image.size[0] < 100 or enhanced_image.size[1] < 100:
return False, "Enhanced image appears to be too small or improperly sized"
# Check that the enhanced image has similar dimensions to the original
# This helps ensure facial proportions are maintained
width_diff = abs(original_image.size[0] - enhanced_image.size[0])
height_diff = abs(original_image.size[1] - enhanced_image.size[1])
# If dimensions are significantly different, it suggests the image proportions changed
if width_diff > 20 or height_diff > 20:
return False, "Enhanced image dimensions differ significantly from original, suggesting facial proportions may have changed"
# Check image has proper RGB channels for natural skin tones
if enhanced_image.mode != 'RGB':
return False, "Enhanced image does not have the correct color mode"
# For now, we'll do basic checks and assume the model follows guidelines
return True, "Image passes quality assessment criteria"
except Exception as e:
print(f"Error in quality assessment: {str(e)}")
# Default to not accepting the image if assessment fails
return False, f"Assessment error: {str(e)}"
def compare_image_results(results_list):
"""
Compares multiple generated images and returns the best one.
If no valid results, returns None.
"""
if not results_list or all(img is None for img in results_list):
return None
# Filter out None values
valid_results = [img for img in results_list if img is not None]
if not valid_results:
return None
# If there's only one valid result, return it
if len(valid_results) == 1:
return valid_results[0]
# For now, we just return the last valid result
# In a more advanced implementation, this could use computer vision techniques
# to analyze facial features, smile quality, and natural appearance
print(f"Comparing {len(valid_results)} valid results and selecting best one")
return valid_results[-1] # Return the last attempt as potentially the best one
def process_smile_enhancement(input_image, max_attempts=3):
try:
if input_image is None:
return None, "", ""
# Get API key from environment variable
gemini_api_key = "AIzaSyCVzRDxkuvtaS1B22F_F-zl0ehhXR0nuU8"
if not gemini_api_key:
print("Error: GEMINI_API_KEY not found in environment variables")
return [input_image], "", "API key not configured"
# Save the input image to a temporary file
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
input_path = tmp.name
input_image.save(input_path)
print(f"Input image saved to {input_path}")
# Initialize attempt counter and result variables
current_attempt = 0
result_images = [] # Store all generated images for comparison
feedback_history = []
max_processing_time = 150 # Maximum time in seconds for overall processing
start_processing_time = time.time()
while current_attempt < max_attempts:
# Check if overall processing time exceeded
if time.time() - start_processing_time > max_processing_time:
print(f"Overall processing time exceeded {max_processing_time} seconds")
break
current_attempt += 1
print(f"Starting processing attempt {current_attempt}/{max_attempts}...")
# Create a comprehensive prompt for true smile enhancement that affects facial features naturally
# Adjust prompt based on previous attempts if needed
prompt = """
Create a naturally enhanced smile that focuses primarily on the overall facial expression rather than perfect teeth. Make the following personalized improvements:
- Focus on enhancing the OVERALL SMILE EXPRESSION with natural eye crinkles, cheeks, and subtle facial changes
- Create authentic "Duchenne smile" characteristics with proper eye corner crinkles (crow's feet) appropriate for this person's age
- Enhance the natural lifting of cheeks that occurs in genuine smiles WITHOUT widening the face
- Add the characteristic slight narrowing of the eyes that happens in genuine smiles
- Create subtle dimples ONLY if they already exist in the original image
- Boost the overall joyful expression while maintaining the person's unique facial structure
- Maintain natural-looking nasolabial folds (smile lines) consistent with the smile intensity
- Subtly complement existing teeth - they should remain natural looking with their original character
IMPORTANT GUIDELINES:
- FOCUS ON THE SMILE AS A COMPLETE FACIAL EXPRESSION - not just teeth
- The most important aspects are eye crinkles, cheek raising, and natural facial expressions
- Teeth should be subtly complemented but NOT the main focus of the enhancement
- PRESERVE THE PERSON'S NATURAL DENTAL CHARACTERISTICS - teeth should look like THEIR teeth
- Keep teeth coloration natural and appropriate for the person - avoid any artificial whitening
- Maintain all natural imperfections in tooth alignment that give character to the smile
- Create a genuine, authentic-looking smile that affects the entire face naturally
- ABSOLUTELY CRITICAL: DO NOT widen the face or change face width/shape at all
- Preserve the person's identity completely (extremely important)
- Preserve exact facial proportions of the original image
- Maintain natural-looking results appropriate for the person's age and face structure
- Keep the original background, lighting, and image quality intact
- Ensure the enhanced smile looks natural, genuine, and believable
- Create a smile that looks like a moment of true happiness for THIS specific person
"""
# If not the first attempt, add previous feedback to the prompt
if current_attempt > 1 and feedback_history:
prompt += """
IMPORTANT FEEDBACK FROM PREVIOUS ATTEMPT:
""" + " ".join(feedback_history) + """
Please address these issues in this new attempt.
"""
# Process silently
print(f"Processing attempt {current_attempt}/{max_attempts}...")
# Set timeout for individual API call
api_call_timeout = time.time() + 45 # 45 second timeout for API call
try:
# Process the image using Google's Gemini model with timeout
image_path, text_response = generate(text=prompt, file_name=input_path, api_key=gemini_api_key)
# Check if API call timeout occurred
if time.time() > api_call_timeout:
print("API call timeout occurred")
feedback_history.append("API call timed out, trying again with simplified request.")
continue
print(f"API response received: Image path: {image_path is not None}, Text length: {len(text_response)}")
if image_path:
# Load and convert the image if needed
try:
current_result = Image.open(image_path)
if current_result.mode == "RGBA":
current_result = current_result.convert("RGB")
print("Successfully loaded generated image for attempt " + str(current_attempt))
# Assess the quality of the enhanced image
is_acceptable, assessment_feedback = assess_image_quality(input_image, current_result)
print(f"Image quality assessment: {is_acceptable}, {assessment_feedback}")
if is_acceptable:
# Store the acceptable result for later comparison
result_images.append(current_result)
print(f"Added acceptable result from attempt {current_attempt} to results list")
# Continue with additional attempts to potentially get even better results
if current_attempt < max_attempts:
feedback_history.append("Previous attempt successful, trying to further improve...")
continue
else:
# Image didn't pass quality assessment, add feedback for next attempt
feedback_history.append(assessment_feedback)
# Still store the result for potential use if no better options are found
result_images.append(current_result)
except Exception as img_error:
print(f"Error processing the generated image: {str(img_error)}")
feedback_history.append(f"Error with image: {str(img_error)}")
else:
# No image was generated, only text response
print("No image was generated, only text response")
feedback_history.append("No image was generated in the previous attempt.")
except Exception as gen_error:
print(f"Error during generation attempt {current_attempt}: {str(gen_error)}")
feedback_history.append(f"Error during processing: {str(gen_error)}")
# Compare all results and select the best one
print(f"All attempts completed. Comparing {len(result_images)} results")
if result_images:
# Select the best result from all generated images
best_result = compare_image_results(result_images)
if best_result:
print("Returning best result from multiple attempts")
success_message = "Enhancement completed after multiple attempts to find the best result"
return [best_result], "", success_message
# Return the original image as a fallback without messages
print("Returning original image as fallback - no valid results generated")
return [input_image], "", "No satisfactory enhancements could be generated"
except Exception as e:
# Return the original image silently on error
print(f"Overall error in process_smile_enhancement: {str(e)}")
return [input_image], "", ""
# Create a clean interface with minimal UI elements and no settings/deployment info
with gr.Blocks(title="Smile Enhancement", css="footer {visibility: hidden} .gradio-container {min-height: 0 !important}") as demo:
with gr.Row():
with gr.Column():
image_input = gr.Image(
type="pil",
label=None,
image_mode="RGB",
elem_classes="upload-box"
)
submit_btn = gr.Button("Enhance Smile with Natural Expressions", elem_classes="generate-btn")
with gr.Column():
output_gallery = gr.Gallery(label=None)
# Simplify feedback to minimize UI elements
feedback_text = gr.Textbox(label=None, visible=True, elem_classes="status-box")
# Hidden element for structure
output_text = gr.Textbox(visible=False)
submit_btn.click(
fn=process_smile_enhancement,
inputs=[image_input],
outputs=[output_gallery, output_text, feedback_text]
)
# Launch the app without showing Gradio branding or share links
demo.queue(max_size=50).launch(
show_api=False,
share=False,
show_error=True,
server_name="0.0.0.0",
) |