File size: 5,653 Bytes
49a6a82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import os
import torch
import torch.nn as nn
import numpy as np
import pandas as pd
import json
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sentence_transformers import SentenceTransformer, util
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
from symspellpy import SymSpell, Verbosity
import gradio as gr

# Ensure Hugging Face cache directory is writable
os.environ["TRANSFORMERS_CACHE"] = "/home/user/.cache/huggingface"

# Set device
device = torch.device("cpu")

# Define DiseaseClassifier Model
class DiseaseClassifier(nn.Module):
    def __init__(self, input_size, num_classes, dropout_rate=0.35665610394511454):
        super(DiseaseClassifier, self).__init__()
        self.fc1 = nn.Linear(input_size, 382)
        self.fc2 = nn.Linear(382, 389)
        self.fc3 = nn.Linear(389, 433)
        self.fc4 = nn.Linear(433, num_classes)
        self.activation = nn.LeakyReLU()
        self.dropout = nn.Dropout(dropout_rate)

    def forward(self, x):
        x = self.activation(self.fc1(x))
        x = self.dropout(x)
        x = self.activation(self.fc2(x))
        x = self.dropout(x)
        x = self.activation(self.fc3(x))
        x = self.dropout(x)
        x = self.fc4(x)  # Logits
        return x

# Define DiseasePredictionModel
class DiseasePredictionModel:
    def __init__(self, ai_model_name="model.pth", data_file="data.csv", symptom_json="symptoms.json", dictionary_file="frequency_dictionary_en_82_765.txt"):
        # Load dataset
        self.df = pd.read_csv(data_file)
        self.symptom_columns = self.load_symptoms(symptom_json)
        self.label_encoder = LabelEncoder()
        self.label_encoder.fit(self.df.iloc[:, 0])
        self.scaler = StandardScaler()
        self.scaler.fit(self.df.iloc[:, 1:].values)

        self.input_size = len(self.symptom_columns)
        self.num_classes = len(self.label_encoder.classes_)
        self.model = self._load_model(ai_model_name)

        self.SYMPTOM_LIST = self.load_symptoms(symptom_json)

        # Load SymSpell dictionary
        self.sym_spell = SymSpell(max_dictionary_edit_distance=2, prefix_length=7)
        self.sym_spell.load_dictionary(dictionary_file, term_index=0, count_index=1)

        # Load BioBERT tokenizer and model
        self.tokenizer = AutoTokenizer.from_pretrained("dmis-lab/biobert-v1.1")
        self.nlp_model = AutoModelForTokenClassification.from_pretrained("dmis-lab/biobert-v1.1")
        self.ner_pipeline = pipeline("ner", model=self.nlp_model, tokenizer=self.tokenizer, aggregation_strategy="simple")

        # Load Sentence Transformer
        self.semantic_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")

    def _load_model(self, ai_model_name):
        model = DiseaseClassifier(self.input_size, self.num_classes).to(device)
        model.load_state_dict(torch.load(ai_model_name, map_location=device))
        model.eval()
        return model

    def predict_disease(self, symptoms):
        input_vector = np.zeros(len(self.symptom_columns))
        for symptom in symptoms:
            if symptom in self.symptom_columns:
                input_vector[list(self.symptom_columns).index(symptom)] = 1

        input_vector = self.scaler.transform([input_vector])
        input_tensor = torch.tensor(input_vector, dtype=torch.float32).to(device)

        with torch.no_grad():
            outputs = self.model(input_tensor)
            _, predicted_class = torch.max(outputs, 1)

        predicted_disease = self.label_encoder.inverse_transform([predicted_class.cpu().numpy()[0]])[0]
        return predicted_disease

    def load_symptoms(self, json_file):
        with open(json_file, "r", encoding="utf-8") as f:
            return json.load(f)

    def correct_text(self, text):
        words = text.split()
        corrected_words = []

        for word in words:
            if word.lower() in [symptom.lower() for symptom in self.SYMPTOM_LIST]:
                corrected_words.append(word)
            else:
                suggestions = self.sym_spell.lookup(word, Verbosity.CLOSEST, max_edit_distance=2)
                if suggestions:
                    corrected_words.append(suggestions[0].term)
                else:
                    corrected_words.append(word)
        return ' '.join(corrected_words)

    def extract_symptoms(self, text):
        ner_results = self.ner_pipeline(text)
        symptoms = set()
        for entity in ner_results:
            if entity["entity_group"] == "DISEASE":
                symptoms.add(entity["word"].lower())
        return list(symptoms)

    def match_symptoms(self, extracted_symptoms):
        matched = {}
        symptom_embeddings = self.semantic_model.encode(self.SYMPTOM_LIST, convert_to_tensor=True)

        for symptom in extracted_symptoms:
            symptom_embedding = self.semantic_model.encode(symptom, convert_to_tensor=True)
            similarities = util.pytorch_cos_sim(symptom_embedding, symptom_embeddings)[0]
            most_similar_idx = similarities.argmax()
            best_match = self.SYMPTOM_LIST[most_similar_idx]
            matched[symptom] = best_match

        return matched.values()

# Initialize Model
model = DiseasePredictionModel()

# Define Prediction Function
def predict(symptoms):
    corrected = model.correct_text(symptoms)
    extracted = model.extract_symptoms(corrected)
    matched = model.match_symptoms(extracted)
    prediction = model.predict_disease(matched)
    return prediction

# Define Gradio Interface
iface = gr.Interface(fn=predict, inputs="text", outputs="text", title="Disease Prediction AI")
iface.launch()