Upload 2 files
Browse files- pipelines.py +91 -0
- sqlite_functions.py +35 -0
pipelines.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from haystack import Pipeline
|
2 |
+
from haystack.components.builders import PromptBuilder
|
3 |
+
from haystack.components.generators.openai import OpenAIGenerator
|
4 |
+
from haystack.components.routers import ConditionalRouter
|
5 |
+
|
6 |
+
from functions import SQLiteQuery
|
7 |
+
|
8 |
+
from typing import List
|
9 |
+
import sqlite3
|
10 |
+
|
11 |
+
import os
|
12 |
+
from getpass import getpass
|
13 |
+
from dotenv import load_dotenv
|
14 |
+
|
15 |
+
load_dotenv()
|
16 |
+
|
17 |
+
if "OPENAI_API_KEY" not in os.environ:
|
18 |
+
os.environ["OPENAI_API_KEY"] = getpass("Enter OpenAI API key:")
|
19 |
+
|
20 |
+
from haystack.components.builders import PromptBuilder
|
21 |
+
from haystack.components.generators import OpenAIGenerator
|
22 |
+
|
23 |
+
llm = OpenAIGenerator(model="gpt-4o")
|
24 |
+
sql_query = SQLiteQuery('data_source.db')
|
25 |
+
|
26 |
+
connection = sqlite3.connect('data_source.db')
|
27 |
+
cur=connection.execute('select * from data_source')
|
28 |
+
columns = [i[0] for i in cur.description]
|
29 |
+
cur.close()
|
30 |
+
|
31 |
+
#Rag Pipeline
|
32 |
+
prompt = PromptBuilder(template="""Please generate an SQL query. The query should answer the following Question: {{question}};
|
33 |
+
If the question cannot be answered given the provided table and columns, return 'no_answer'
|
34 |
+
The query is to be answered for the table is called 'data_source' with the following
|
35 |
+
Columns: {{columns}};
|
36 |
+
Answer:""")
|
37 |
+
|
38 |
+
routes = [
|
39 |
+
{
|
40 |
+
"condition": "{{'no_answer' not in replies[0]}}",
|
41 |
+
"output": "{{replies}}",
|
42 |
+
"output_name": "sql",
|
43 |
+
"output_type": List[str],
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"condition": "{{'no_answer' in replies[0]}}",
|
47 |
+
"output": "{{question}}",
|
48 |
+
"output_name": "go_to_fallback",
|
49 |
+
"output_type": str,
|
50 |
+
},
|
51 |
+
]
|
52 |
+
|
53 |
+
router = ConditionalRouter(routes)
|
54 |
+
|
55 |
+
fallback_prompt = PromptBuilder(template="""User entered a query that cannot be answered with the given table.
|
56 |
+
The query was: {{question}} and the table had columns: {{columns}}.
|
57 |
+
Let the user know why the question cannot be answered""")
|
58 |
+
fallback_llm = OpenAIGenerator(model="gpt-4")
|
59 |
+
|
60 |
+
conditional_sql_pipeline = Pipeline()
|
61 |
+
conditional_sql_pipeline.add_component("prompt", prompt)
|
62 |
+
conditional_sql_pipeline.add_component("llm", llm)
|
63 |
+
conditional_sql_pipeline.add_component("router", router)
|
64 |
+
conditional_sql_pipeline.add_component("fallback_prompt", fallback_prompt)
|
65 |
+
conditional_sql_pipeline.add_component("fallback_llm", fallback_llm)
|
66 |
+
conditional_sql_pipeline.add_component("sql_querier", sql_query)
|
67 |
+
|
68 |
+
conditional_sql_pipeline.connect("prompt", "llm")
|
69 |
+
conditional_sql_pipeline.connect("llm.replies", "router.replies")
|
70 |
+
conditional_sql_pipeline.connect("router.sql", "sql_querier.queries")
|
71 |
+
conditional_sql_pipeline.connect("router.go_to_fallback", "fallback_prompt.question")
|
72 |
+
conditional_sql_pipeline.connect("fallback_prompt", "fallback_llm")
|
73 |
+
|
74 |
+
def rag_pipeline_func(queries: str, columns: str):
|
75 |
+
print("RAG PIPELINE FUNCTION")
|
76 |
+
result = conditional_sql_pipeline.run({"prompt": {"question": queries,
|
77 |
+
"columns": columns},
|
78 |
+
"router": {"question": queries},
|
79 |
+
"fallback_prompt": {"columns": columns}})
|
80 |
+
|
81 |
+
if 'sql_querier' in result:
|
82 |
+
reply = result['sql_querier']['results'][0]
|
83 |
+
elif 'fallback_llm' in result:
|
84 |
+
reply = result['fallback_llm']['replies'][0]
|
85 |
+
else:
|
86 |
+
reply = result["llm"]["replies"][0]
|
87 |
+
|
88 |
+
print("reply content")
|
89 |
+
print(reply.content)
|
90 |
+
|
91 |
+
return {"reply": reply.content}
|
sqlite_functions.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
from haystack import component
|
3 |
+
import pandas as pd
|
4 |
+
import sqlite3
|
5 |
+
|
6 |
+
@component
|
7 |
+
class SQLiteQuery:
|
8 |
+
|
9 |
+
def __init__(self, sql_database: str):
|
10 |
+
self.connection = sqlite3.connect(sql_database, check_same_thread=False)
|
11 |
+
|
12 |
+
@component.output_types(results=List[str], queries=List[str])
|
13 |
+
def run(self, queries: List[str]):
|
14 |
+
print("ATTEMPTING TO RUN QUERY")
|
15 |
+
results = []
|
16 |
+
for query in queries:
|
17 |
+
result = pd.read_sql(query, self.connection)
|
18 |
+
results.append(f"{result}")
|
19 |
+
"self.connection.close()"
|
20 |
+
return {"results": results, "queries": queries}
|
21 |
+
|
22 |
+
|
23 |
+
sql_query = SQLiteQuery('data_source.db')
|
24 |
+
|
25 |
+
def sqlite_query_func(queries: List[str]):
|
26 |
+
try:
|
27 |
+
result = sql_query.run(queries)
|
28 |
+
return {"reply": result["results"][0]}
|
29 |
+
|
30 |
+
except Exception as e:
|
31 |
+
reply = f"""There was an error running the SQL Query = {queries}
|
32 |
+
The error is {e},
|
33 |
+
You should probably try again.
|
34 |
+
"""
|
35 |
+
return {"reply": reply}
|