nlpblogs commited on
Commit
02e10bd
·
verified ·
1 Parent(s): 4381cc0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -3
app.py CHANGED
@@ -65,10 +65,15 @@ if st.button("Sentiment Analysis", type="secondary"):
65
  progress_bar.empty()
66
  try:
67
  wait.until(EC.presence_of_element_located((By.CSS_SELECTOR, "#contents #contents")))
68
- comments = driver.find_elements(By.CSS_SELECTOR, "#content #content-text") #Corrected CSS Selector
69
  user_id = 1
70
  for comment in comments:
71
- timestamp = datetime.now().strftime("%Y-%m-%d")
 
 
 
 
 
72
  data.append({"User ID": user_id, "Comment": comment.text, "comment_date": timestamp})
73
  user_id += 1
74
  data = [dict(t) for t in {tuple(d.items()) for d in data}]
@@ -78,7 +83,7 @@ if st.button("Sentiment Analysis", type="secondary"):
78
  df = pd.DataFrame(data, columns=["User ID", "Comment", "comment_date"])
79
  st.dataframe(df)
80
 
81
- if not df.empty and 'Comment' in df.columns and not df['Comment'].empty: #Added checks.
82
  inputs = tokenizer(df['Comment'].tolist(), return_tensors="pt", padding=True, truncation=True)
83
  with torch.no_grad():
84
  logits = model(**inputs).logits
 
65
  progress_bar.empty()
66
  try:
67
  wait.until(EC.presence_of_element_located((By.CSS_SELECTOR, "#contents #contents")))
68
+ comments = driver.find_elements(By.CSS_SELECTOR, "#content #content-text")
69
  user_id = 1
70
  for comment in comments:
71
+ timestamp = None
72
+ try:
73
+ timestamp_element = comment.find_element(By.XPATH, './ancestor::ytd-comment-renderer//yt-formatted-string[@class="published-time-text style-scope ytd-comment-renderer"]')
74
+ timestamp = timestamp_element.text
75
+ except Exception as e:
76
+ print(f"Date not found for comment: {comment.text}. Error: {e}")
77
  data.append({"User ID": user_id, "Comment": comment.text, "comment_date": timestamp})
78
  user_id += 1
79
  data = [dict(t) for t in {tuple(d.items()) for d in data}]
 
83
  df = pd.DataFrame(data, columns=["User ID", "Comment", "comment_date"])
84
  st.dataframe(df)
85
 
86
+ if not df.empty and 'Comment' in df.columns and not df['Comment'].empty:
87
  inputs = tokenizer(df['Comment'].tolist(), return_tensors="pt", padding=True, truncation=True)
88
  with torch.no_grad():
89
  logits = model(**inputs).logits