File size: 7,898 Bytes
31af44b ca12572 31af44b ca12572 31af44b ca12572 5a1ddac add0c31 31af44b add0c31 31af44b add0c31 d50002e cc688c2 d50002e ea96c2b ca12572 ea96c2b eae5fab 2e14077 ea96c2b eae5fab ca12572 eae5fab ca12572 eae5fab ca12572 eae5fab 31af44b eae5fab 30bf2ff 5b710b5 30bf2ff 2096041 4307f05 75798a6 7a8dd31 30bf2ff feca4a5 712bcb0 feca4a5 712bcb0 49549b5 d50002e 712bcb0 9ea338b d50002e 712bcb0 49549b5 712bcb0 31af44b 712bcb0 9ea338b c6b1123 9ea338b 712bcb0 c6b1123 31af44b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
import streamlit as st
import transformers
import pandas as pd
import torch
from selenium import webdriver
from selenium.webdriver.chrome.service import Service
from webdriver_manager.chrome import ChromeDriverManager
from webdriver_manager.chrome import ChromeType
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.common.keys import Keys
from selenium.webdriver.chrome.options import Options
import time
import plotly.express as px
from wordcloud import WordCloud
import matplotlib.pyplot as plt
import nltk
from nltk.corpus import stopwords
import re
nltk.download('stopwords')
with st.sidebar:
st.button("DEMO APP", type="primary")
expander = st.expander("**Important notes on the YouTube Comments Sentiment Analysis App**")
expander.write('''
**How to Use**
This app works with a YouTube URL. Paste the URL and press the 'Sentiment Analysis' button to perform sentiment analysis on the YouTube Comments.
**Usage Limits**
You can perform sentiment analysis on YouTube Comments up to 5 times.
**Subscription Management**
This demo app offers a one-day subscription, expiring after 24 hours. If you are interested in building your own YouTube Comments Sentiment Analysis Web App, we invite you to explore our NLP Web App Store on our website. You can select your desired features, place your order, and we will deliver your custom app in five business days. If you wish to delete your Account with us, please contact us at [email protected]
**Customization**
To change the app's background color to white or black, click the three-dot menu on the right-hand side of your app, go to Settings and then Choose app theme, colors and fonts.
**Charts**
Hover to interact with and download the charts.
**File Handling and Errors**
For any errors or inquiries, please contact us at [email protected]
''')
st.subheader("YouTube Comments Sentiment Analysis", divider="red")
tokenizer = transformers.DistilBertTokenizer.from_pretrained("tabularisai/robust-sentiment-analysis")
model = transformers.DistilBertForSequenceClassification.from_pretrained("tabularisai/robust-sentiment-analysis")
if 'url_count' not in st.session_state:
st.session_state['url_count'] = 0
max_attempts = 5
def update_url_count():
st.session_state['url_count'] += 1
def clear_question():
st.session_state["url"] = ""
url = st.text_input("Enter YouTube URL:", key="url")
st.button("Clear question", on_click=clear_question)
if st.button("Sentiment Analysis", type="secondary"):
if st.session_state['url_count'] < max_attempts:
if url:
update_url_count() # Increment count only when the button is pressed and URL is valid.
with st.spinner("Wait for it...", show_time=True):
options = Options()
options.add_argument("--headless")
options.add_argument("--disable-gpu")
options.add_argument("--no-sandbox")
options.add_argument("--disable-dev-shm-usage")
options.add_argument("--start-maximized")
service = Service(ChromeDriverManager(chrome_type=ChromeType.CHROMIUM).install())
driver = webdriver.Chrome(service=service, options=options)
data = []
wait = WebDriverWait(driver, 30)
driver.get(url)
placeholder = st.empty()
progress_bar = st.progress(0)
for item in range(30):
try:
body = WebDriverWait(driver, 30).until(EC.visibility_of_element_located((By.TAG_NAME, "body")))
body.send_keys(Keys.END)
placeholder.text(f"Scrolled {item + 1} times")
progress_bar.progress((item + 1) / 150)
time.sleep(0.5)
except Exception as e:
st.error(f"Exception during scrolling: {e}")
break
placeholder.text("Scrolling complete.")
progress_bar.empty()
data = []
try:
wait.until(EC.presence_of_element_located((By.CSS_SELECTOR, "#contents #contents")))
comments = driver.find_elements(By.CSS_SELECTOR, "#content #content-text")
user_id = 1
for comment in comments:
data.append({"Comment": comment.text})
user_id += 1
data = [dict(t) for t in {tuple(d.items()) for d in data}]
except Exception as e:
st.error(f"Exception during comment extraction: {e}")
driver.quit()
df = pd.DataFrame(data, columns=["Comment"])
st.dataframe(df)
if tokenizer and model:
inputs = tokenizer(df['Comment'].tolist(), return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
logits = model(**inputs).logits
predicted_probabilities = torch.nn.functional.softmax(logits, dim=-1)
predicted_labels = predicted_probabilities.argmax(dim=1)
results = []
for i, label in enumerate(predicted_labels):
results.append({'Review Number': i + 1, 'Sentiment': model.config.id2label[label.item()]})
sentiment_df = pd.DataFrame(results)
value_counts1 = sentiment_df['Sentiment'].value_counts().rename_axis('Sentiment').reset_index(name='count')
final_df = value_counts1
tab1, tab2 = st.tabs(["Pie Chart", "Word Cloud"])
with tab1:
fig1 = px.pie(final_df, values='count', names='Sentiment', hover_data=['count'], labels={'count': 'count'})
fig1.update_traces(textposition='inside', textinfo='percent+label')
st.plotly_chart(fig1)
result = pd.concat([df, sentiment_df], axis=1)
with tab2:
text = " ".join(comment for comment in df['Comment'])
stopwords_set = set(stopwords.words('english'))
text = re.sub('[^A-Za-z]+', ' ', text)
words = text.split()
clean_text = [word for word in words if word.lower() not in stopwords_set]
clean_text = ' '.join(clean_text)
wc = WordCloud(width=3000, height=2000, background_color='black', colormap='Pastel1', collocations=False).generate(clean_text)
fig = plt.figure(figsize=(40, 30))
plt.imshow(wc)
plt.axis('off')
st.pyplot(fig)
result1 = result.drop('Review Number', axis=1)
csv = result1.to_csv(index=False)
st.download_button(
label="Download data as CSV",
data=csv,
file_name='Summary of the results.csv',
mime='text/csv',
)
else:
st.warning("Please enter a URL.")
else:
st.warning(f"You have reached the maximum URL attempts ({max_attempts}).")
st.divider()
if 'url_count' in st.session_state:
st.write(f"URL pasted {st.session_state['url_count']} times.") |