File size: 8,223 Bytes
c6127ba
 
ca12572
 
 
c6127ba
ca12572
c6127ba
ca12572
c6127ba
2096041
c6127ba
ca12572
 
 
c6127ba
2096041
c6127ba
 
ca12572
2096041
c6127ba
2096041
c6127ba
 
 
 
ca12572
c6127ba
 
5a1ddac
c6127ba
 
 
feca4a5
 
 
 
 
 
 
c6127ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca12572
ea96c2b
 
 
ca12572
ea96c2b
 
eae5fab
ea96c2b
 
 
 
eae5fab
ca12572
eae5fab
ca12572
eae5fab
ca12572
 
eae5fab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6127ba
30bf2ff
 
c6127ba
 
30bf2ff
2096041
 
4307f05
2096041
 
30bf2ff
 
 
c6127ba
30bf2ff
 
feca4a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54fb744
feca4a5
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import streamlit as st 

from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.chrome.options import Options

from selenium.webdriver.chrome.service import Service

import pandas as pd

from selenium.webdriver.common.keys import Keys

from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
import time
import sys
from datetime import datetime


from webdriver_manager.chrome import ChromeDriverManager
from selenium.webdriver.chrome.service import Service as ChromeService

from webdriver_manager.core.os_manager import ChromeType

import re


import transformers
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
import io
import plotly.express as px
import zipfile
import torch 

import matplotlib.pyplot as plt
from wordcloud import WordCloud
from nltk.corpus import stopwords

import nltk
nltk.download('stopwords')



with st.sidebar:
    st.button("DEMO APP", type="primary")
   

    expander = st.expander("**Important notes on the YouTube Comments Sentiment Analysis App**")
    expander.write('''
    
    
    **How to Use**
    This app works with a YouTube URL.  Paste the URL and press the 'Sentiment Analysis' button to perform sentiment analysis on your YouTube Comments.
    
    
    **Usage Limits**
    You can perform sentiment analysis on YouTube Comments up to 5 times.
    
    
    **Subscription Management**
    This demo app offers a one-day subscription, expiring after 24 hours. If you are interested in building your own YouTube Comments Sentiment Analysis Web App, we invite you to explore our NLP Web App Store on our website. You can select your desired features, place your order, and we will deliver your custom app in five business days. If you wish to delete your Account with us, please contact us at [email protected]
    
    
    **Customization**
    To change the app's background color to white or black, click the three-dot menu on the right-hand side of your app, go to Settings and then Choose app theme, colors and fonts.
    
    
    **Charts**
    Hover to interact with and download the charts.
    
    
    **File Handling and Errors**
    For any errors or inquiries, please contact us at [email protected]
   
    
    
''')


st.subheader("YouTube Comments Sentiment Analysis", divider="red")
tokenizer = transformers.DistilBertTokenizer.from_pretrained("tabularisai/robust-sentiment-analysis")
model = transformers.DistilBertForSequenceClassification.from_pretrained("tabularisai/robust-sentiment-analysis")

if 'url_count' not in st.session_state:
    st.session_state['url_count'] = 0

max_attempts = 2

def update_url_count():
    st.session_state['url_count'] += 1

def clear_question():
    st.session_state["url"] = ""

url = st.text_input("Enter YouTube URL:", key="url")
st.button("Clear question", on_click=clear_question)

if st.button("Sentiment Analysis", type="secondary"):
    if st.session_state['url_count'] < max_attempts:
        if url:
            with st.spinner("Wait for it...", show_time=True):
                options = Options()
                options.add_argument("--headless")
                options.add_argument("--disable-gpu")
                options.add_argument("--no-sandbox")
                options.add_argument("--disable-dev-shm-usage")
                options.add_argument("--start-maximized")
                service = Service(ChromeDriverManager(chrome_type=ChromeType.CHROMIUM).install())
                driver = webdriver.Chrome(service=service, options=options)
                data = []
                wait = WebDriverWait(driver, 30)
                driver.get(url)

                placeholder = st.empty()
                progress_bar = st.progress(0)

                for item in range(30):
                    try:
                        body = WebDriverWait(driver, 30).until(EC.visibility_of_element_located((By.TAG_NAME, "body")))
                        body.send_keys(Keys.END)
                        placeholder.text(f"Scrolled {item + 1} times")
                        progress_bar.progress((item + 1) / 150)
                        time.sleep(0.5)
                    except Exception as e:
                        st.error(f"Exception during scrolling: {e}")
                        break

                placeholder.text("Scrolling complete.")
                progress_bar.empty()

                data = []
                try:
                    wait.until(EC.presence_of_element_located((By.CSS_SELECTOR, "#contents #contents")))
                    comments = driver.find_elements(By.CSS_SELECTOR, "#content #content-text")
                    user_id = 1
                    for comment in comments:
                        timestamp = datetime.now().strftime("%Y-%m-%d")
                        data.append({"User ID": user_id, "Comment": comment.text, "comment_date": timestamp})
                        user_id += 1
                    data = [dict(t) for t in {tuple(d.items()) for d in data}]
                except Exception as e:
                    st.error(f"Exception during comment extraction: {e}")
                driver.quit()
                df = pd.DataFrame(data, columns=["User ID", "Comment", "comment_date"])
                st.dataframe(df)

                if tokenizer and model:
                    inputs = tokenizer(df['Comment'].tolist(), return_tensors="pt", padding=True, truncation=True)
                    with torch.no_grad():
                        logits = model(**inputs).logits
                        predicted_probabilities = torch.nn.functional.softmax(logits, dim=-1)
                        predicted_labels = predicted_probabilities.argmax(dim=1)
                        results = []
                        for i, label in enumerate(predicted_labels):
                            results.append({'Review Number': i + 1, 'Sentiment': model.config.id2label[label.item()]})
                        sentiment_df = pd.DataFrame(results)

                    value_counts1 = sentiment_df['Sentiment'].value_counts().rename_axis('Sentiment').reset_index(name='count')
                    final_df = value_counts1
                    tab1, tab2 = st.tabs(["Pie Chart", "Bar Chart"])
                    with tab1:
                        fig1 = px.pie(final_df, values='count', names='Sentiment', hover_data=['count'], labels={'count': 'count'})
                        fig1.update_traces(textposition='inside', textinfo='percent+label')
                        st.plotly_chart(fig1)

                    result = pd.concat([df, sentiment_df], axis=1)
                    st.dataframe(result)

                    with tab2:
                        fig2 = px.bar(result, x="Sentiment", y="comment_date", color="Sentiment")
                        st.plotly_chart(fig2)

                    text = " ".join(review for review in df['Review'])
                    stopwords = set(stopwords.words('english'))
                    text = re.sub('[^A-Za-z]+', ' ', text)
                    words = text.split()
                    clean_text = [word for word in words if word.lower() not in stopwords]
                    clean_text = ' '.join(clean_text)
                    stopwords = set(stopwords.words('english'))
                    wc = WordCloud(width=800, height=400, background_color='white').generate(clean_text)
                    fig = plt.figure(figsize=(12,6))
                    plt.imshow(wc, interpolation='bilinear')
                    plt.axis('off')

                    st.pyplot(fig)


                    csv = result.to_csv(index=False)
                    st.download_button(
                        label="Download data as CSV",
                        data=csv,
                        file_name='Summary of the results.csv',
                        mime='text/csv',
                    )
                
        else:
            st.warning("Please enter a URL.")
    else:
        st.warning(f"You have reached the maximum URL attempts ({max_attempts}).")

if 'url_count' in st.session_state: #added if statement.
    st.write(f"URL pasted {st.session_state['url_count']} times.")