File size: 9,749 Bytes
ee3e666
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5433a6
ee3e666
 
 
 
 
 
 
 
 
 
 
 
 
 
a5433a6
 
 
 
ee3e666
a393071
ee3e666
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a393071
ee3e666
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe3d8df
 
b344bf8
abf2650
ee3e666
abf2650
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2d177a
 
abf2650
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be329e0
abf2650
 
 
 
 
 
 
 
 
dc11954
abf2650
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31e2b5d
 
abf2650
 
 
 
31e2b5d
abf2650
 
 
 
31e2b5d
 
 
 
 
 
 
a5433a6
 
 
 
abf2650
 
 
a5433a6
 
 
 
 
abf2650
 
 
 
 
 
 
 
 
 
a5433a6
 
 
 
abf2650
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import streamlit as st 

from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.chrome.options import Options
from webdriver_manager.chrome import ChromeDriverManager
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.chrome.service import Service as ChromeService
from webdriver_manager.core.os_manager import ChromeType

import time
import sys
import re
import transformers
import pandas as pd 
import torch
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
import io
import plotly.express as px
import zipfile
from streamlit_extras.stylable_container import stylable_container


# sidebar
with st.sidebar:
    with stylable_container(
        key="test_button",
        css_styles="""
        button {
            background-color: yellow;
            border: 1px solid black;
            padding: 5px;
            color: black;
        }
        """,
    ):
        st.button("DEMO APP")
   

    expander = st.expander("**Important notes on the Google Maps Reviews Sentiment Analysis App**")
    expander.write('''
    
    
    **How to Use**
    This app works with the URL of the Google Maps Reviews. Paste the URL and press the 'Sentiment Analysis' button to perform sentiment analysis on your Google Maps Reviews.
    
    
    **Usage Limits**
    You can perform sentiment analysis on Google Maps Reviews up to 5 times.
    
    
    **Subscription Management**
    This demo app offers a one-day subscription, expiring after 24 hours. If you are interested in building your own Google Maps Reviews Sentiment Analysis Web App, we invite you to explore our NLP Web App Store on our website. You can select your desired features, place your order, and we will deliver your custom app in five business days. If you wish to delete your Account with us, please contact us at [email protected]
    
    
    **Customization**
    To change the app's background color to white or black, click the three-dot menu on the right-hand side of your app, go to Settings and then Choose app theme, colors and fonts.
    
    
    **Charts**
    Hover to interact with and download the charts.
    
    
    **File Handling and Errors**
    The pie and bar charts are based only on reviews containing text. For any errors or inquiries, please contact us at [email protected]
   
    
    
''')
    
tokenizer = DistilBertTokenizer.from_pretrained("tabularisai/robust-sentiment-analysis")
model = DistilBertForSequenceClassification.from_pretrained("tabularisai/robust-sentiment-analysis")



def scroll_and_check_for_new_reviews(driver, current_review_count):
    """Scrolls down the page and checks if new reviews have loaded."""
    try:
        last_review = driver.find_elements(By.CSS_SELECTOR, 'div.jftiEf')[-1]
        driver.execute_script("arguments[0].scrollIntoView(true);", last_review)
        time.sleep(3)  # Increased sleep time to allow for loading
        new_review_count = len(driver.find_elements(By.CSS_SELECTOR, 'div.jftiEf'))
        return new_review_count > current_review_count
    except Exception as e:
        st.error(f"Error during scrolling: {e}")
        return False

def scrape_google_reviews(url):
    """Scrapes Google reviews from the given URL and performs sentiment analysis."""
    try:
        options = Options()
        options.add_argument("--headless")
        options.add_argument("--disable-gpu")
        options.add_argument("--no-sandbox")
        options.add_argument("--disable-dev-shm-usage")
        options.add_argument("--start-maximized")
        service = Service(ChromeDriverManager(chrome_type=ChromeType.CHROMIUM).install())
        driver = webdriver.Chrome(service=service, options=options)
        driver.get(url)

       

        current_review_count = 0
        while scroll_and_check_for_new_reviews(driver, current_review_count):
            current_review_count = len(driver.find_elements(By.CSS_SELECTOR, 'div.jftiEf'))
            
        
        

        reviews = driver.find_elements(By.CSS_SELECTOR, 'div.jftiEf')
        review_data = []
        for review_elem in reviews:
            try:
                reviewer_name = review_elem.find_element(By.CSS_SELECTOR, '.d4r55').text.strip()
            except Exception:
                reviewer_name = 'No name'
            try:
                review_text = review_elem.find_element(By.CSS_SELECTOR, '.wiI7pd').text.strip()
            except Exception:
                review_text = 'No review text'
            rating = 0
            try:
                reviews_element = review_elem.find_element(By.CSS_SELECTOR, "span[role='img']")
                reviews_text = reviews_element.get_attribute("aria-label")
                match = re.search(r'(\d+(?:\.\d+)?) stars', reviews_text)
                if match:
                    rating = float(match.group(1))
            except Exception:
                pass
            try:
                date_elem = review_elem.find_element(By.CSS_SELECTOR, '.rsqaWe')
                review_date = date_elem.text.strip()
            except Exception:
                review_date = 'No date'
            review_data.append({
                'reviewer_name': reviewer_name,
                'review_text': review_text,
                'rating': rating,
                'review_date': review_date,
            })
        driver.quit()
        df1 = pd.DataFrame(review_data)
        df = df1[df1["review_text"].str.contains("No review text")==False]
        

        
        if tokenizer and model:
            inputs = tokenizer(df['review_text'].tolist(), return_tensors="pt", padding=True, truncation=True)
            with torch.no_grad():
                logits = model(**inputs).logits
            predicted_probabilities = torch.nn.functional.softmax(logits, dim=-1)
            predicted_labels = predicted_probabilities.argmax(dim=1)
            results = []
            for i, label in enumerate(predicted_labels):
                results.append({'Review Number': i + 1, 'Sentiment': model.config.id2label[label.item()]})
            sentiment_df = pd.DataFrame(results)
            value_counts1 = sentiment_df['Sentiment'].value_counts().rename_axis('Sentiment').reset_index(name='count')
            final_df = value_counts1
            

            


            
            fig1 = px.pie(final_df, values='count', names='Sentiment', hover_data=['count'], labels={'count': 'count'})
            fig1.update_traces(textposition='inside', textinfo='percent+label')
            
            result = pd.concat([df, sentiment_df], axis=1)
            result['rating'] = result['rating'].astype(int)

            
            

            
            
            fig2 = px.bar(result, x='review_date', y='rating',
            hover_data=['rating', 'review_date'], color='Sentiment',
            labels={'Sentiment':'Sentiment'}, height=400)

            

            fig3 = px.scatter(result, x=df["review_date"], y=df["rating"], color=df["rating"])
            return sentiment_df, result, fig1, fig2, fig3
        else:
            return df, None, None, None, None
    except Exception as e:
        st.error(f"An error occurred: {e}")
        if 'driver' in locals():
            driver.quit()
        return None, None, None, None, None

# Streamlit UI
st.subheader("Google Maps Reviews Sentiment Analysis", divider = "orange")






if 'url_count' not in st.session_state:
    st.session_state['url_count'] = 0

max_attempts = 5

def update_url_count():
    st.session_state['url_count'] += 1

def clear_question():
    st.session_state["url"] = ""

url = st.text_input("Enter Google Maps Reviews URL:", key="url")
st.button("Clear question", on_click=clear_question)




if st.button("Sentiment Analysis"):
    if st.session_state['url_count'] < max_attempts:
        if url:
            with st.spinner("Wait for it...", show_time=True):
                sentiment_df, df, fig1, fig2, fig3 = scrape_google_reviews(url)
            if sentiment_df is not None:
                st.success("Reviews scraped successfully!")
                df1 = df[['review_text', 'Sentiment', 'rating', 'review_date']]
                st.dataframe(df1)

                tab1, tab2, tab3 = st.tabs(["Pie Chart", "Bar Chart", "Scatter Plot"])
                if fig1 is not None:
                    with tab1:
                        st.plotly_chart(fig1)
                if fig2 is not None:
                    with tab2:
                        st.plotly_chart(fig2)
                if fig3 is not None:
                    with tab3:
                        st.plotly_chart(fig3)

                buf = io.BytesIO()
                with zipfile.ZipFile(buf, "w") as myzip:
                    myzip.writestr("Summary of the results.csv", df1.to_csv(index=False))
                with stylable_container(
                    key="download_button",
                    css_styles="""button { background-color: yellow; border: 1px solid black; padding: 5px; color: black; }""",
                ):
                    st.download_button(
                        label="Download zip file",
                        data=buf.getvalue(),
                        file_name="zip_file.zip",
                        mime="application/zip",
                    )
            else:
                st.warning("Failed to scrape reviews.")
            update_url_count()
        else:
            st.warning("Please enter a URL.")
    else:
        st.warning(f"You have reached the maximum URL attempts ({max_attempts}).")

st.write(f"URL pasted {st.session_state['url_count']} times.")