nlpblogs commited on
Commit
0d1a3ca
·
verified ·
1 Parent(s): 179aead

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -15
app.py CHANGED
@@ -125,12 +125,13 @@ if st.session_state['upload_count'] < max_attempts:
125
  entities = model.predict_entities(text_data, labels)
126
  df = pd.DataFrame(entities)
127
 
128
- tab1, tab2, tab3 = st.tabs(["Applicant's Profile", "Similarity"])
129
- with tab1:
130
- fig = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
 
131
  values='score', color='label')
132
- fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
133
- st.plotly_chart(fig, key="figure 1")
134
 
135
  vectorizer = TfidfVectorizer()
136
  tfidf_matrix = vectorizer.fit_transform(result)
@@ -138,20 +139,17 @@ if st.session_state['upload_count'] < max_attempts:
138
  cosine_sim_matrix = cosine_similarity(tfidf_matrix)
139
  cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
140
 
141
- with tab2:
142
- fig = px.imshow(cosine_sim_df, text_auto=True,
143
  labels=dict(x="Keyword similarity", y="Resumes", color="Productivity"),
144
  x=['Resume', 'Jon Description'],
145
  y=['Resume', 'Job Description'])
146
- st.plotly_chart(fig, key="figure 2")
147
 
148
-
149
-
150
-
151
- for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
152
- with st.popover("See result"):
153
- st.write(f"Similarity of job description with Applicant's 1 resume based on keywords: {similarity_score:.2f}")
154
- st.info(
155
  "A score closer to 1 (0.80, 0.90) means higher similarity between Applicant's 1 resume and job description. A score closer to 0 (0.20, 0.30) means lower similarity between Applicant's 1 resume and job description.")
156
  else:
157
  st.warning(f"You have reached the maximum upload attempts ({max_attempts}).")
 
125
  entities = model.predict_entities(text_data, labels)
126
  df = pd.DataFrame(entities)
127
 
128
+ tab1, tab2 = st.tabs(["Applicant's Profile", "Similarity"])
129
+ with st.spinner("Wait for it...", show_time=True):
130
+ with tab1:
131
+ fig = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
132
  values='score', color='label')
133
+ fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
134
+ st.plotly_chart(fig, key="figure 1")
135
 
136
  vectorizer = TfidfVectorizer()
137
  tfidf_matrix = vectorizer.fit_transform(result)
 
139
  cosine_sim_matrix = cosine_similarity(tfidf_matrix)
140
  cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
141
 
142
+ with tab2:
143
+ fig = px.imshow(cosine_sim_df, text_auto=True,
144
  labels=dict(x="Keyword similarity", y="Resumes", color="Productivity"),
145
  x=['Resume', 'Jon Description'],
146
  y=['Resume', 'Job Description'])
147
+ st.plotly_chart(fig, key="figure 2")
148
 
149
+ for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
150
+ with st.popover("See result"):
151
+ st.write(f"Similarity of job description with Applicant's 1 resume based on keywords: {similarity_score:.2f}")
152
+ st.info(
 
 
 
153
  "A score closer to 1 (0.80, 0.90) means higher similarity between Applicant's 1 resume and job description. A score closer to 0 (0.20, 0.30) means lower similarity between Applicant's 1 resume and job description.")
154
  else:
155
  st.warning(f"You have reached the maximum upload attempts ({max_attempts}).")