Update app.py
Browse files
app.py
CHANGED
@@ -38,26 +38,24 @@ all_resumes_text1 = [] # Store the text content of each PDF
|
|
38 |
|
39 |
if uploaded_files:
|
40 |
for uploaded_file in uploaded_files:
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
for
|
52 |
-
|
53 |
-
|
54 |
-
data = {"Text": text_data, **entity_dict}
|
55 |
|
56 |
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
st.error(f"Error processing file {uploaded_file.name}: {e}")
|
61 |
|
62 |
if all_resumes_text1:
|
63 |
all_documents = [job_description_series.iloc[0]] + all_resumes_text
|
@@ -96,26 +94,24 @@ all_resumes_text2 = [] # Store the text content of each PDF
|
|
96 |
|
97 |
if uploaded_files:
|
98 |
for uploaded_file in uploaded_files:
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
for
|
110 |
-
|
111 |
-
|
112 |
-
data = {"Text": text_data, **entity_dict}
|
113 |
|
114 |
|
115 |
|
116 |
-
|
117 |
-
|
118 |
-
st.error(f"Error processing file {uploaded_file.name}: {e}")
|
119 |
|
120 |
if all_resumes_text2:
|
121 |
all_documents = [job_description_series.iloc[0]] + all_resumes_text
|
|
|
38 |
|
39 |
if uploaded_files:
|
40 |
for uploaded_file in uploaded_files:
|
41 |
+
pdf_reader = PdfReader(uploaded_file)
|
42 |
+
text_data = ""
|
43 |
+
for page in pdf_reader.pages:
|
44 |
+
text_data += page.extract_text()
|
45 |
+
model = GLiNER.from_pretrained("urchade/gliner_base")
|
46 |
+
labels = ["person", "country", "organization", "time", "role"]
|
47 |
+
entities = model.predict_entities(text_data, labels)
|
48 |
+
|
49 |
+
entity_dict = {}
|
50 |
+
for label in labels:
|
51 |
+
entity_dict[label] = [entity["text"] for entity in entities if entity["label"] == label]
|
52 |
+
|
53 |
+
data = {"Text": text_data, **entity_dict}
|
|
|
54 |
|
55 |
|
56 |
|
57 |
+
all_resumes_text1.append(data)
|
58 |
+
|
|
|
59 |
|
60 |
if all_resumes_text1:
|
61 |
all_documents = [job_description_series.iloc[0]] + all_resumes_text
|
|
|
94 |
|
95 |
if uploaded_files:
|
96 |
for uploaded_file in uploaded_files:
|
97 |
+
pdf_reader = PdfReader(uploaded_file)
|
98 |
+
text_data = ""
|
99 |
+
for page in pdf_reader.pages:
|
100 |
+
text_data += page.extract_text()
|
101 |
+
model = GLiNER.from_pretrained("urchade/gliner_base")
|
102 |
+
labels = ["person", "country", "organization", "time", "role"]
|
103 |
+
entities = model.predict_entities(text_data, labels)
|
104 |
+
|
105 |
+
entity_dict = {}
|
106 |
+
for label in labels:
|
107 |
+
entity_dict[label] = [entity["text"] for entity in entities if entity["label"] == label]
|
108 |
+
|
109 |
+
data = {"Text": text_data, **entity_dict}
|
|
|
110 |
|
111 |
|
112 |
|
113 |
+
all_resumes_text2.append(data)
|
114 |
+
|
|
|
115 |
|
116 |
if all_resumes_text2:
|
117 |
all_documents = [job_description_series.iloc[0]] + all_resumes_text
|