nlpblogs commited on
Commit
05e7e94
·
verified ·
1 Parent(s): 1a68e65

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -34
app.py CHANGED
@@ -38,26 +38,24 @@ all_resumes_text1 = [] # Store the text content of each PDF
38
 
39
  if uploaded_files:
40
  for uploaded_file in uploaded_files:
41
- try:
42
- pdf_reader = PdfReader(uploaded_file)
43
- text_data = ""
44
- for page in pdf_reader.pages:
45
- text_data += page.extract_text()
46
- model = GLiNER.from_pretrained("urchade/gliner_base")
47
- labels = ["person", "country", "organization", "time", "role"]
48
- entities = model.predict_entities(text_data, labels)
49
-
50
- entity_dict = {}
51
- for label in labels:
52
- entity_dict[label] = [entity["text"] for entity in entities if entity["label"] == label]
53
-
54
- data = {"Text": text_data, **entity_dict}
55
 
56
 
57
 
58
- all_resumes_text1.append(data)
59
- except Exception as e:
60
- st.error(f"Error processing file {uploaded_file.name}: {e}")
61
 
62
  if all_resumes_text1:
63
  all_documents = [job_description_series.iloc[0]] + all_resumes_text
@@ -96,26 +94,24 @@ all_resumes_text2 = [] # Store the text content of each PDF
96
 
97
  if uploaded_files:
98
  for uploaded_file in uploaded_files:
99
- try:
100
- pdf_reader = PdfReader(uploaded_file)
101
- text_data = ""
102
- for page in pdf_reader.pages:
103
- text_data += page.extract_text()
104
- model = GLiNER.from_pretrained("urchade/gliner_base")
105
- labels = ["person", "country", "organization", "time", "role"]
106
- entities = model.predict_entities(text_data, labels)
107
-
108
- entity_dict = {}
109
- for label in labels:
110
- entity_dict[label] = [entity["text"] for entity in entities if entity["label"] == label]
111
-
112
- data = {"Text": text_data, **entity_dict}
113
 
114
 
115
 
116
- all_resumes_text2.append(data)
117
- except Exception as e:
118
- st.error(f"Error processing file {uploaded_file.name}: {e}")
119
 
120
  if all_resumes_text2:
121
  all_documents = [job_description_series.iloc[0]] + all_resumes_text
 
38
 
39
  if uploaded_files:
40
  for uploaded_file in uploaded_files:
41
+ pdf_reader = PdfReader(uploaded_file)
42
+ text_data = ""
43
+ for page in pdf_reader.pages:
44
+ text_data += page.extract_text()
45
+ model = GLiNER.from_pretrained("urchade/gliner_base")
46
+ labels = ["person", "country", "organization", "time", "role"]
47
+ entities = model.predict_entities(text_data, labels)
48
+
49
+ entity_dict = {}
50
+ for label in labels:
51
+ entity_dict[label] = [entity["text"] for entity in entities if entity["label"] == label]
52
+
53
+ data = {"Text": text_data, **entity_dict}
 
54
 
55
 
56
 
57
+ all_resumes_text1.append(data)
58
+
 
59
 
60
  if all_resumes_text1:
61
  all_documents = [job_description_series.iloc[0]] + all_resumes_text
 
94
 
95
  if uploaded_files:
96
  for uploaded_file in uploaded_files:
97
+ pdf_reader = PdfReader(uploaded_file)
98
+ text_data = ""
99
+ for page in pdf_reader.pages:
100
+ text_data += page.extract_text()
101
+ model = GLiNER.from_pretrained("urchade/gliner_base")
102
+ labels = ["person", "country", "organization", "time", "role"]
103
+ entities = model.predict_entities(text_data, labels)
104
+
105
+ entity_dict = {}
106
+ for label in labels:
107
+ entity_dict[label] = [entity["text"] for entity in entities if entity["label"] == label]
108
+
109
+ data = {"Text": text_data, **entity_dict}
 
110
 
111
 
112
 
113
+ all_resumes_text2.append(data)
114
+
 
115
 
116
  if all_resumes_text2:
117
  all_documents = [job_description_series.iloc[0]] + all_resumes_text