nlpblogs's picture
Update app.py
c927f4a verified
raw
history blame
4.67 kB
import streamlit as st
from PyPDF2 import PdfReader
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import streamlit as st
from PyPDF2 import PdfReader
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from gliner import GLiNER
import streamlit as st
import pandas as pd
from PyPDF2 import PdfReader
from gliner import GLiNER
import streamlit as st
import pandas as pd
from PyPDF2 import PdfReader
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import tempfile
txt1 = st.text_area("Job description", key = "text 1")
job_description_series1 = pd.Series(txt1, name="Text")
st.dataframe(job_description_series1)
from transformers import pipeline
uploaded_files = st.file_uploader(
"Choose a PDF file(s) for candidate profiles", type="pdf", key="candidate 1"
)
all_resumes_text = [] # Store the text content and entities of each PDF
if uploaded_files:
for uploaded_file in uploaded_files:
pdf_reader = PdfReader(uploaded_file)
text_data = ""
for page in pdf_reader.pages:
text_data += page.extract_text()
model = GLiNER.from_pretrained("urchade/gliner_base")
labels = ["person", "country", "organization", "time", "role"]
entities = model.predict_entities(text_data, labels)
entity_dict = {}
for label in labels:
entity_dict[label] = [entity["text"] for entity in entities if entity["label"] == label]
data = {"Text": text_data, **entity_dict}
all_resumes_text.append(data)
if all_resumes_text:
all_documents = [job_description_series.iloc[0]] + all_resumes_text
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(all_documents)
tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
st.subheader("TF-IDF Values:")
st.dataframe(tfidf_df)
cosine_sim_matrix = cosine_similarity(tfidf_matrix)
cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
st.subheader("Cosine Similarity Matrix:")
st.dataframe(cosine_sim_df)
# Display similarity scores between the job description and each resume
st.subheader("Cosine Similarity Scores (Job Description vs. Resumes):")
for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
st.write(f"Similarity with Candidate Profile {i + 1}: {similarity_score:.4f}")
st.divider()
txt2 = st.text_area("Job description", key = "text 2")
job_description_series2 = pd.Series(txt2, name="Text")
st.dataframe(job_description_series2)
uploaded_files = st.file_uploader(
"Choose a PDF file(s) for candidate profiles", type="pdf", key="candidate 2"
)
all_resumes_text = [] # Store the text content and entities of each PDF
if uploaded_files:
for uploaded_file in uploaded_files:
pdf_reader = PdfReader(uploaded_file)
text_data = ""
for page in pdf_reader.pages:
text_data += page.extract_text()
model = GLiNER.from_pretrained("urchade/gliner_base")
labels = ["person", "country", "organization", "time", "role"]
entities = model.predict_entities(text_data, labels)
entity_dict = {}
for label in labels:
entity_dict[label] = [entity["text"] for entity in entities if entity["label"] == label]
data = {"Text": text_data, **entity_dict}
all_resumes_text.append(data)
if all_resumes_text:
all_documents = [job_description_series.iloc[0]] + all_resumes_text
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(all_documents)
tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
st.subheader("TF-IDF Values:")
st.dataframe(tfidf_df)
cosine_sim_matrix = cosine_similarity(tfidf_matrix)
cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
st.subheader("Cosine Similarity Matrix:")
st.dataframe(cosine_sim_df)
# Display similarity scores between the job description and each resume
st.subheader("Cosine Similarity Scores (Job Description vs. Resumes):")
for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
st.write(f"Similarity with Candidate Profile {i + 1}: {similarity_score:.4f}")