|
import streamlit as st |
|
from PyPDF2 import PdfReader |
|
import pandas as pd |
|
from sklearn.feature_extraction.text import TfidfVectorizer |
|
|
|
from sklearn.metrics.pairwise import cosine_similarity |
|
|
|
import streamlit as st |
|
from PyPDF2 import PdfReader |
|
import pandas as pd |
|
from sklearn.feature_extraction.text import TfidfVectorizer |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
from gliner import GLiNER |
|
|
|
|
|
import streamlit as st |
|
import pandas as pd |
|
from PyPDF2 import PdfReader |
|
from gliner import GLiNER |
|
|
|
import streamlit as st |
|
import pandas as pd |
|
from PyPDF2 import PdfReader |
|
from sklearn.feature_extraction.text import TfidfVectorizer |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
import tempfile |
|
|
|
import streamlit as st |
|
import pandas as pd |
|
from PyPDF2 import PdfReader |
|
from gliner import GLiNER |
|
from sklearn.feature_extraction.text import TfidfVectorizer |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
|
|
def process_documents(job_description_key, file_uploader_key, title): |
|
txt = st.text_area(f"Job description for {title}", key=job_description_key) |
|
job_description_series = pd.Series([txt], name="Text") |
|
st.dataframe(job_description_series) |
|
|
|
uploaded_files = st.file_uploader( |
|
f"Choose PDF file(s) for candidate profiles for {title}", type="pdf", key=file_uploader_key, |
|
) |
|
|
|
all_extracted_data = [] |
|
if uploaded_files: |
|
model = GLiNER.from_pretrained("urchade/gliner_base") |
|
labels = ["person", "country", "organization", "time", "role"] |
|
for uploaded_file in uploaded_files: |
|
try: |
|
pdf_reader = PdfReader(uploaded_file) |
|
text_data = "" |
|
for page in pdf_reader.pages: |
|
text_data += page.extract_text() |
|
|
|
entities = model.predict_entities(text_data, labels) |
|
entity_dict = {} |
|
for label in labels: |
|
entity_dict[label] = [entity["text"] for entity in entities if entity["label"] == label] |
|
data = {"Text": text_data, **entity_dict} |
|
all_extracted_data.append(data) |
|
except Exception as e: |
|
st.error(f"Error processing file {uploaded_file.name}: {e}") |
|
|
|
if all_extracted_data: |
|
df_entities = pd.DataFrame(all_extracted_data) |
|
st.subheader(f"Extracted Entities ({title}):") |
|
st.dataframe(df_entities) |
|
|
|
all_documents = [job_description_series.iloc[0]] + df_entities['Text'].tolist() |
|
vectorizer = TfidfVectorizer() |
|
tfidf_matrix = vectorizer.fit_transform(all_documents) |
|
tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out()) |
|
st.subheader(f"TF-IDF Values ({title}):") |
|
st.dataframe(tfidf_df) |
|
|
|
cosine_sim_matrix = cosine_similarity(tfidf_matrix) |
|
cosine_sim_df = pd.DataFrame(cosine_sim_matrix) |
|
st.subheader(f"Cosine Similarity Matrix ({title}):") |
|
st.dataframe(cosine_sim_df) |
|
|
|
st.subheader(f"Cosine Similarity Scores (Job Description for {title} vs. Resumes):") |
|
for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]): |
|
st.write(f"Similarity with Candidate Profile {i + 1}: {similarity_score:.4f}") |
|
|
|
st.header("Analysis Set 1") |
|
process_documents("text 1", "candidate 1", "Set 1") |
|
|
|
st.divider() |
|
|
|
st.header("Analysis Set 2") |
|
process_documents("text 2", "candidate 2", "Set 2") |
|
|
|
|
|
|
|
|