|
import streamlit as st |
|
from PyPDF2 import PdfReader |
|
import pandas as pd |
|
from sklearn.feature_extraction.text import TfidfVectorizer |
|
|
|
from sklearn.metrics.pairwise import cosine_similarity |
|
|
|
import streamlit as st |
|
from PyPDF2 import PdfReader |
|
import pandas as pd |
|
from sklearn.feature_extraction.text import TfidfVectorizer |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
from gliner import GLiNER |
|
|
|
|
|
import streamlit as st |
|
import pandas as pd |
|
from PyPDF2 import PdfReader |
|
from gliner import GLiNER |
|
|
|
import streamlit as st |
|
import pandas as pd |
|
from PyPDF2 import PdfReader |
|
from sklearn.feature_extraction.text import TfidfVectorizer |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
import tempfile |
|
|
|
txt = st.text_area("Job description", key = "text 1") |
|
job = pd.Series(txt, name="Text") |
|
st.dataframe(job) |
|
|
|
uploaded_files = st.file_uploader( |
|
"Choose a CSV file", accept_multiple_files=True, type = "pdf", key = "candidate 1" |
|
) |
|
for uploaded_file in uploaded_files: |
|
pdf_reader = PdfReader(uploaded_file) |
|
text_data = "" |
|
for page in pdf_reader.pages: |
|
text_data += page.extract_text() |
|
data = pd.Series(text_data, name = 'Text') |
|
st.dataframe(data) |
|
frames = [job, data] |
|
result1 = pd.concat(frames) |
|
st.dataframe(result1) |
|
|
|
result = result1.values.tolist() |
|
st.dataframe(result) |
|
|
|
model = GLiNER.from_pretrained("urchade/gliner_base") |
|
labels = ["person", "country", "organization", "time", "role"] |
|
entities = model.predict_entities(text_data, labels) |
|
|
|
entity_dict = {} |
|
for label in labels: |
|
entity_dict[label] = [entity["text"] for entity in entities if entity["label"] == label] |
|
|
|
|
|
data = {"Text": text_data, **entity_dict} |
|
st.dataframe(data) |
|
|
|
|
|
vectorizer = TfidfVectorizer() |
|
tfidf_matrix = vectorizer.fit_transform(result) |
|
tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out()) |
|
st.subheader("TF-IDF Values:") |
|
st.dataframe(tfidf_df) |
|
|
|
cosine_sim_matrix = cosine_similarity(tfidf_matrix) |
|
cosine_sim_df = pd.DataFrame(cosine_sim_matrix) |
|
st.subheader("Cosine Similarity Matrix:") |
|
st.dataframe(cosine_sim_df) |
|
|
|
import plotly.express as px |
|
|
|
fig = px.imshow(cosine_sim_df, text_auto=True, labels=dict(x="Cosine similarity", y="Text", color="Productivity"), |
|
x=['text1', 'text2'], |
|
y=['text1', 'text2']) |
|
st.plotly_chart(fig) |
|
|
|
st.subheader("Cosine Similarity Scores (Job Description vs. Resumes):") |
|
for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]): |
|
st.write(f"Similarity with Candidate Profile {i + 1}: {similarity_score:.4f}") |
|
|
|
|
|
st.divider() |
|
|
|
txt = st.text_area("Job description", key = "text 2") |
|
job = pd.Series(txt, name="Text") |
|
st.dataframe(job) |
|
|
|
uploaded_files = st.file_uploader( |
|
"Choose a CSV file", accept_multiple_files=True, type = "pdf", key = "candidate 2" |
|
) |
|
for uploaded_file in uploaded_files: |
|
pdf_reader = PdfReader(uploaded_file) |
|
text_data = "" |
|
for page in pdf_reader.pages: |
|
text_data += page.extract_text() |
|
data = pd.Series(text_data, name = 'Text') |
|
st.dataframe(data) |
|
frames = [job, data] |
|
result = pd.concat(frames) |
|
st.dataframe(result) |
|
|