|
import copy |
|
|
|
import numpy as np |
|
from torch_geometric.loader import DataLoader |
|
from tqdm import tqdm |
|
|
|
from confidence.dataset import ListDataset |
|
from utils import so3, torus |
|
from utils.sampling import randomize_position, sampling |
|
import torch |
|
from utils.diffusion_utils import get_t_schedule |
|
|
|
|
|
def loss_function(tr_pred, rot_pred, tor_pred, data, t_to_sigma, device, tr_weight=1, rot_weight=1, |
|
tor_weight=1, apply_mean=True, no_torsion=False): |
|
tr_sigma, rot_sigma, tor_sigma = t_to_sigma( |
|
*[torch.cat([d.complex_t[noise_type] for d in data]) if device.type == 'cuda' else data.complex_t[noise_type] |
|
for noise_type in ['tr', 'rot', 'tor']]) |
|
mean_dims = (0, 1) if apply_mean else 1 |
|
|
|
|
|
tr_score = torch.cat([d.tr_score for d in data], dim=0) if device.type == 'cuda' else data.tr_score |
|
tr_sigma = tr_sigma.unsqueeze(-1) |
|
tr_loss = ((tr_pred.cpu() - tr_score) ** 2 * tr_sigma ** 2).mean(dim=mean_dims) |
|
tr_base_loss = (tr_score ** 2 * tr_sigma ** 2).mean(dim=mean_dims).detach() |
|
|
|
|
|
rot_score = torch.cat([d.rot_score for d in data], dim=0) if device.type == 'cuda' else data.rot_score |
|
rot_score_norm = so3.score_norm(rot_sigma.cpu()).unsqueeze(-1) |
|
rot_loss = (((rot_pred.cpu() - rot_score) / rot_score_norm) ** 2).mean(dim=mean_dims) |
|
rot_base_loss = ((rot_score / rot_score_norm) ** 2).mean(dim=mean_dims).detach() |
|
|
|
|
|
if not no_torsion: |
|
edge_tor_sigma = torch.from_numpy( |
|
np.concatenate([d.tor_sigma_edge for d in data] if device.type == 'cuda' else data.tor_sigma_edge)) |
|
tor_score = torch.cat([d.tor_score for d in data], dim=0) if device.type == 'cuda' else data.tor_score |
|
tor_score_norm2 = torch.tensor(torus.score_norm(edge_tor_sigma.cpu().numpy())).float() |
|
tor_loss = ((tor_pred.cpu() - tor_score) ** 2 / tor_score_norm2) |
|
tor_base_loss = ((tor_score ** 2 / tor_score_norm2)).detach() |
|
if apply_mean: |
|
tor_loss, tor_base_loss = tor_loss.mean() * torch.ones(1, dtype=torch.float), tor_base_loss.mean() * torch.ones(1, dtype=torch.float) |
|
else: |
|
index = torch.cat([torch.ones(d['ligand'].edge_mask.sum()) * i for i, d in |
|
enumerate(data)]).long() if device.type == 'cuda' else data['ligand'].batch[ |
|
data['ligand', 'ligand'].edge_index[0][data['ligand'].edge_mask]] |
|
num_graphs = len(data) if device.type == 'cuda' else data.num_graphs |
|
t_l, t_b_l, c = torch.zeros(num_graphs), torch.zeros(num_graphs), torch.zeros(num_graphs) |
|
c.index_add_(0, index, torch.ones(tor_loss.shape)) |
|
c = c + 0.0001 |
|
t_l.index_add_(0, index, tor_loss) |
|
t_b_l.index_add_(0, index, tor_base_loss) |
|
tor_loss, tor_base_loss = t_l / c, t_b_l / c |
|
else: |
|
if apply_mean: |
|
tor_loss, tor_base_loss = torch.zeros(1, dtype=torch.float), torch.zeros(1, dtype=torch.float) |
|
else: |
|
tor_loss, tor_base_loss = torch.zeros(len(rot_loss), dtype=torch.float), torch.zeros(len(rot_loss), dtype=torch.float) |
|
|
|
loss = tr_loss * tr_weight + rot_loss * rot_weight + tor_loss * tor_weight |
|
return loss, tr_loss.detach(), rot_loss.detach(), tor_loss.detach(), tr_base_loss, rot_base_loss, tor_base_loss |
|
|
|
|
|
class AverageMeter(): |
|
def __init__(self, types, unpooled_metrics=False, intervals=1): |
|
self.types = types |
|
self.intervals = intervals |
|
self.count = 0 if intervals == 1 else torch.zeros(len(types), intervals) |
|
self.acc = {t: torch.zeros(intervals) for t in types} |
|
self.unpooled_metrics = unpooled_metrics |
|
|
|
def add(self, vals, interval_idx=None): |
|
if self.intervals == 1: |
|
self.count += 1 if vals[0].dim() == 0 else len(vals[0]) |
|
for type_idx, v in enumerate(vals): |
|
self.acc[self.types[type_idx]] += v.sum() if self.unpooled_metrics else v |
|
else: |
|
for type_idx, v in enumerate(vals): |
|
self.count[type_idx].index_add_(0, interval_idx[type_idx], torch.ones(len(v))) |
|
if not torch.allclose(v, torch.tensor(0.0)): |
|
self.acc[self.types[type_idx]].index_add_(0, interval_idx[type_idx], v) |
|
|
|
def summary(self): |
|
if self.intervals == 1: |
|
out = {k: v.item() / self.count for k, v in self.acc.items()} |
|
return out |
|
else: |
|
out = {} |
|
for i in range(self.intervals): |
|
for type_idx, k in enumerate(self.types): |
|
out['int' + str(i) + '_' + k] = ( |
|
list(self.acc.values())[type_idx][i] / self.count[type_idx][i]).item() |
|
return out |
|
|
|
|
|
def train_epoch(model, loader, optimizer, device, t_to_sigma, loss_fn, ema_weigths): |
|
model.train() |
|
meter = AverageMeter(['loss', 'tr_loss', 'rot_loss', 'tor_loss', 'tr_base_loss', 'rot_base_loss', 'tor_base_loss']) |
|
|
|
for data in tqdm(loader, total=len(loader)): |
|
if device.type == 'cuda' and len(data) == 1 or device.type == 'cpu' and data.num_graphs == 1: |
|
print("Skipping batch of size 1 since otherwise batchnorm would not work.") |
|
optimizer.zero_grad() |
|
try: |
|
tr_pred, rot_pred, tor_pred = model(data) |
|
loss, tr_loss, rot_loss, tor_loss, tr_base_loss, rot_base_loss, tor_base_loss = \ |
|
loss_fn(tr_pred, rot_pred, tor_pred, data=data, t_to_sigma=t_to_sigma, device=device) |
|
loss.backward() |
|
optimizer.step() |
|
ema_weigths.update(model.parameters()) |
|
meter.add([loss.cpu().detach(), tr_loss, rot_loss, tor_loss, tr_base_loss, rot_base_loss, tor_base_loss]) |
|
except RuntimeError as e: |
|
if 'out of memory' in str(e): |
|
print('| WARNING: ran out of memory, skipping batch') |
|
for p in model.parameters(): |
|
if p.grad is not None: |
|
del p.grad |
|
torch.cuda.empty_cache() |
|
continue |
|
elif 'Input mismatch' in str(e): |
|
print('| WARNING: weird torch_cluster error, skipping batch') |
|
for p in model.parameters(): |
|
if p.grad is not None: |
|
del p.grad |
|
torch.cuda.empty_cache() |
|
continue |
|
else: |
|
raise e |
|
|
|
return meter.summary() |
|
|
|
|
|
def test_epoch(model, loader, device, t_to_sigma, loss_fn, test_sigma_intervals=False): |
|
model.eval() |
|
meter = AverageMeter(['loss', 'tr_loss', 'rot_loss', 'tor_loss', 'tr_base_loss', 'rot_base_loss', 'tor_base_loss'], |
|
unpooled_metrics=True) |
|
|
|
if test_sigma_intervals: |
|
meter_all = AverageMeter( |
|
['loss', 'tr_loss', 'rot_loss', 'tor_loss', 'tr_base_loss', 'rot_base_loss', 'tor_base_loss'], |
|
unpooled_metrics=True, intervals=10) |
|
|
|
for data in tqdm(loader, total=len(loader)): |
|
try: |
|
with torch.no_grad(): |
|
tr_pred, rot_pred, tor_pred = model(data) |
|
|
|
loss, tr_loss, rot_loss, tor_loss, tr_base_loss, rot_base_loss, tor_base_loss = \ |
|
loss_fn(tr_pred, rot_pred, tor_pred, data=data, t_to_sigma=t_to_sigma, apply_mean=False, device=device) |
|
meter.add([loss.cpu().detach(), tr_loss, rot_loss, tor_loss, tr_base_loss, rot_base_loss, tor_base_loss]) |
|
|
|
if test_sigma_intervals > 0: |
|
complex_t_tr, complex_t_rot, complex_t_tor = [torch.cat([d.complex_t[noise_type] for d in data]) for |
|
noise_type in ['tr', 'rot', 'tor']] |
|
sigma_index_tr = torch.round(complex_t_tr.cpu() * (10 - 1)).long() |
|
sigma_index_rot = torch.round(complex_t_rot.cpu() * (10 - 1)).long() |
|
sigma_index_tor = torch.round(complex_t_tor.cpu() * (10 - 1)).long() |
|
meter_all.add( |
|
[loss.cpu().detach(), tr_loss, rot_loss, tor_loss, tr_base_loss, rot_base_loss, tor_base_loss], |
|
[sigma_index_tr, sigma_index_tr, sigma_index_rot, sigma_index_tor, sigma_index_tr, sigma_index_rot, |
|
sigma_index_tor, sigma_index_tr]) |
|
|
|
except RuntimeError as e: |
|
if 'out of memory' in str(e): |
|
print('| WARNING: ran out of memory, skipping batch') |
|
for p in model.parameters(): |
|
if p.grad is not None: |
|
del p.grad |
|
torch.cuda.empty_cache() |
|
continue |
|
elif 'Input mismatch' in str(e): |
|
print('| WARNING: weird torch_cluster error, skipping batch') |
|
for p in model.parameters(): |
|
if p.grad is not None: |
|
del p.grad |
|
torch.cuda.empty_cache() |
|
continue |
|
else: |
|
raise e |
|
|
|
out = meter.summary() |
|
if test_sigma_intervals > 0: out.update(meter_all.summary()) |
|
return out |
|
|
|
|
|
def inference_epoch(model, complex_graphs, device, t_to_sigma, args): |
|
t_schedule = get_t_schedule(inference_steps=args.inference_steps) |
|
tr_schedule, rot_schedule, tor_schedule = t_schedule, t_schedule, t_schedule |
|
|
|
dataset = ListDataset(complex_graphs) |
|
loader = DataLoader(dataset=dataset, batch_size=1, shuffle=False) |
|
rmsds = [] |
|
|
|
for orig_complex_graph in tqdm(loader): |
|
data_list = [copy.deepcopy(orig_complex_graph)] |
|
randomize_position(data_list, args.no_torsion, False, args.tr_sigma_max) |
|
|
|
predictions_list = None |
|
failed_convergence_counter = 0 |
|
while predictions_list == None: |
|
try: |
|
predictions_list, confidences = sampling(data_list=data_list, model=model.module if device.type=='cuda' else model, |
|
inference_steps=args.inference_steps, |
|
tr_schedule=tr_schedule, rot_schedule=rot_schedule, |
|
tor_schedule=tor_schedule, |
|
device=device, t_to_sigma=t_to_sigma, model_args=args) |
|
except Exception as e: |
|
if 'failed to converge' in str(e): |
|
failed_convergence_counter += 1 |
|
if failed_convergence_counter > 5: |
|
print('| WARNING: SVD failed to converge 5 times - skipping the complex') |
|
break |
|
print('| WARNING: SVD failed to converge - trying again with a new sample') |
|
else: |
|
raise e |
|
if failed_convergence_counter > 5: continue |
|
if args.no_torsion: |
|
orig_complex_graph['ligand'].orig_pos = (orig_complex_graph['ligand'].pos.cpu().numpy() + |
|
orig_complex_graph.original_center.cpu().numpy()) |
|
|
|
filterHs = torch.not_equal(predictions_list[0]['ligand'].x[:, 0], 0).cpu().numpy() |
|
|
|
if isinstance(orig_complex_graph['ligand'].orig_pos, list): |
|
orig_complex_graph['ligand'].orig_pos = orig_complex_graph['ligand'].orig_pos[0] |
|
|
|
ligand_pos = np.asarray( |
|
[complex_graph['ligand'].pos.cpu().numpy()[filterHs] for complex_graph in predictions_list]) |
|
orig_ligand_pos = np.expand_dims( |
|
orig_complex_graph['ligand'].orig_pos[filterHs] - orig_complex_graph.original_center.cpu().numpy(), axis=0) |
|
rmsd = np.sqrt(((ligand_pos - orig_ligand_pos) ** 2).sum(axis=2).mean(axis=1)) |
|
rmsds.append(rmsd) |
|
|
|
rmsds = np.array(rmsds) |
|
losses = {'rmsds_lt2': (100 * (rmsds < 2).sum() / len(rmsds)), |
|
'rmsds_lt5': (100 * (rmsds < 5).sum() / len(rmsds))} |
|
return losses |
|
|