|
import numpy as np |
|
import torch |
|
from torch_geometric.loader import DataLoader |
|
|
|
from utils.diffusion_utils import modify_conformer, set_time |
|
from utils.torsion import modify_conformer_torsion_angles |
|
from scipy.spatial.transform import Rotation as R |
|
|
|
|
|
def randomize_position(data_list, no_torsion, no_random, tr_sigma_max): |
|
|
|
if not no_torsion: |
|
|
|
for complex_graph in data_list: |
|
torsion_updates = np.random.uniform(low=-np.pi, high=np.pi, size=complex_graph['ligand'].edge_mask.sum()) |
|
complex_graph['ligand'].pos = \ |
|
modify_conformer_torsion_angles(complex_graph['ligand'].pos, |
|
complex_graph['ligand', 'ligand'].edge_index.T[ |
|
complex_graph['ligand'].edge_mask], |
|
complex_graph['ligand'].mask_rotate[0], torsion_updates) |
|
|
|
for complex_graph in data_list: |
|
|
|
molecule_center = torch.mean(complex_graph['ligand'].pos, dim=0, keepdim=True) |
|
random_rotation = torch.from_numpy(R.random().as_matrix()).float() |
|
complex_graph['ligand'].pos = (complex_graph['ligand'].pos - molecule_center) @ random_rotation.T |
|
|
|
|
|
if not no_random: |
|
tr_update = torch.normal(mean=0, std=tr_sigma_max, size=(1, 3)) |
|
complex_graph['ligand'].pos += tr_update |
|
|
|
|
|
def sampling(data_list, model, inference_steps, tr_schedule, rot_schedule, tor_schedule, device, t_to_sigma, model_args, |
|
no_random=False, ode=False, visualization_list=None, confidence_model=None, confidence_data_list=None, |
|
confidence_model_args=None, batch_size=32, no_final_step_noise=False): |
|
N = len(data_list) |
|
|
|
for t_idx in range(inference_steps): |
|
t_tr, t_rot, t_tor = tr_schedule[t_idx], rot_schedule[t_idx], tor_schedule[t_idx] |
|
dt_tr = tr_schedule[t_idx] - tr_schedule[t_idx + 1] if t_idx < inference_steps - 1 else tr_schedule[t_idx] |
|
dt_rot = rot_schedule[t_idx] - rot_schedule[t_idx + 1] if t_idx < inference_steps - 1 else rot_schedule[t_idx] |
|
dt_tor = tor_schedule[t_idx] - tor_schedule[t_idx + 1] if t_idx < inference_steps - 1 else tor_schedule[t_idx] |
|
|
|
loader = DataLoader(data_list, batch_size=batch_size) |
|
new_data_list = [] |
|
|
|
for complex_graph_batch in loader: |
|
b = complex_graph_batch.num_graphs |
|
complex_graph_batch = complex_graph_batch.to(device) |
|
|
|
tr_sigma, rot_sigma, tor_sigma = t_to_sigma(t_tr, t_rot, t_tor) |
|
set_time(complex_graph_batch, t_tr, t_rot, t_tor, b, model_args.all_atoms, device) |
|
|
|
with torch.no_grad(): |
|
tr_score, rot_score, tor_score = model(complex_graph_batch) |
|
|
|
tr_g = tr_sigma * torch.sqrt(torch.tensor(2 * np.log(model_args.tr_sigma_max / model_args.tr_sigma_min))) |
|
rot_g = 2 * rot_sigma * torch.sqrt(torch.tensor(np.log(model_args.rot_sigma_max / model_args.rot_sigma_min))) |
|
|
|
if ode: |
|
tr_perturb = (0.5 * tr_g ** 2 * dt_tr * tr_score.cpu()).cpu() |
|
rot_perturb = (0.5 * rot_score.cpu() * dt_rot * rot_g ** 2).cpu() |
|
else: |
|
tr_z = torch.zeros((b, 3)) if no_random or (no_final_step_noise and t_idx == inference_steps - 1) \ |
|
else torch.normal(mean=0, std=1, size=(b, 3)) |
|
tr_perturb = (tr_g ** 2 * dt_tr * tr_score.cpu() + tr_g * np.sqrt(dt_tr) * tr_z).cpu() |
|
|
|
rot_z = torch.zeros((b, 3)) if no_random or (no_final_step_noise and t_idx == inference_steps - 1) \ |
|
else torch.normal(mean=0, std=1, size=(b, 3)) |
|
rot_perturb = (rot_score.cpu() * dt_rot * rot_g ** 2 + rot_g * np.sqrt(dt_rot) * rot_z).cpu() |
|
|
|
if not model_args.no_torsion: |
|
tor_g = tor_sigma * torch.sqrt(torch.tensor(2 * np.log(model_args.tor_sigma_max / model_args.tor_sigma_min))) |
|
if ode: |
|
tor_perturb = (0.5 * tor_g ** 2 * dt_tor * tor_score.cpu()).numpy() |
|
else: |
|
tor_z = torch.zeros(tor_score.shape) if no_random or (no_final_step_noise and t_idx == inference_steps - 1) \ |
|
else torch.normal(mean=0, std=1, size=tor_score.shape) |
|
tor_perturb = (tor_g ** 2 * dt_tor * tor_score.cpu() + tor_g * np.sqrt(dt_tor) * tor_z).numpy() |
|
torsions_per_molecule = tor_perturb.shape[0] // b |
|
else: |
|
tor_perturb = None |
|
|
|
|
|
new_data_list.extend([modify_conformer(complex_graph, tr_perturb[i:i + 1], rot_perturb[i:i + 1].squeeze(0), |
|
tor_perturb[i * torsions_per_molecule:(i + 1) * torsions_per_molecule] if not model_args.no_torsion else None) |
|
for i, complex_graph in enumerate(complex_graph_batch.to('cpu').to_data_list())]) |
|
data_list = new_data_list |
|
|
|
if visualization_list is not None: |
|
for idx, visualization in enumerate(visualization_list): |
|
visualization.add((data_list[idx]['ligand'].pos + data_list[idx].original_center).detach().cpu(), |
|
part=1, order=t_idx + 2) |
|
|
|
with torch.no_grad(): |
|
if confidence_model is not None: |
|
loader = DataLoader(data_list, batch_size=batch_size) |
|
confidence_loader = iter(DataLoader(confidence_data_list, batch_size=batch_size)) |
|
confidence = [] |
|
for complex_graph_batch in loader: |
|
complex_graph_batch = complex_graph_batch.to(device) |
|
if confidence_data_list is not None: |
|
confidence_complex_graph_batch = next(confidence_loader).to(device) |
|
confidence_complex_graph_batch['ligand'].pos = complex_graph_batch['ligand'].pos |
|
set_time(confidence_complex_graph_batch, 0, 0, 0, N, confidence_model_args.all_atoms, device) |
|
confidence.append(confidence_model(confidence_complex_graph_batch)) |
|
else: |
|
confidence.append(confidence_model(complex_graph_batch)) |
|
confidence = torch.cat(confidence, dim=0) |
|
else: |
|
confidence = None |
|
|
|
return data_list, confidence |
|
|