|
import math |
|
|
|
import torch |
|
|
|
|
|
def quaternion_to_matrix(quaternions): |
|
""" |
|
From https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html |
|
Convert rotations given as quaternions to rotation matrices. |
|
|
|
Args: |
|
quaternions: quaternions with real part first, |
|
as tensor of shape (..., 4). |
|
|
|
Returns: |
|
Rotation matrices as tensor of shape (..., 3, 3). |
|
""" |
|
r, i, j, k = torch.unbind(quaternions, -1) |
|
two_s = 2.0 / (quaternions * quaternions).sum(-1) |
|
|
|
o = torch.stack( |
|
( |
|
1 - two_s * (j * j + k * k), |
|
two_s * (i * j - k * r), |
|
two_s * (i * k + j * r), |
|
two_s * (i * j + k * r), |
|
1 - two_s * (i * i + k * k), |
|
two_s * (j * k - i * r), |
|
two_s * (i * k - j * r), |
|
two_s * (j * k + i * r), |
|
1 - two_s * (i * i + j * j), |
|
), |
|
-1, |
|
) |
|
return o.reshape(quaternions.shape[:-1] + (3, 3)) |
|
|
|
|
|
def axis_angle_to_quaternion(axis_angle): |
|
""" |
|
From https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html |
|
Convert rotations given as axis/angle to quaternions. |
|
|
|
Args: |
|
axis_angle: Rotations given as a vector in axis angle form, |
|
as a tensor of shape (..., 3), where the magnitude is |
|
the angle turned anticlockwise in radians around the |
|
vector's direction. |
|
|
|
Returns: |
|
quaternions with real part first, as tensor of shape (..., 4). |
|
""" |
|
angles = torch.norm(axis_angle, p=2, dim=-1, keepdim=True) |
|
half_angles = 0.5 * angles |
|
eps = 1e-6 |
|
small_angles = angles.abs() < eps |
|
sin_half_angles_over_angles = torch.empty_like(angles) |
|
sin_half_angles_over_angles[~small_angles] = ( |
|
torch.sin(half_angles[~small_angles]) / angles[~small_angles] |
|
) |
|
|
|
|
|
sin_half_angles_over_angles[small_angles] = ( |
|
0.5 - (angles[small_angles] * angles[small_angles]) / 48 |
|
) |
|
quaternions = torch.cat( |
|
[torch.cos(half_angles), axis_angle * sin_half_angles_over_angles], dim=-1 |
|
) |
|
return quaternions |
|
|
|
|
|
def axis_angle_to_matrix(axis_angle): |
|
""" |
|
From https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html |
|
Convert rotations given as axis/angle to rotation matrices. |
|
|
|
Args: |
|
axis_angle: Rotations given as a vector in axis angle form, |
|
as a tensor of shape (..., 3), where the magnitude is |
|
the angle turned anticlockwise in radians around the |
|
vector's direction. |
|
|
|
Returns: |
|
Rotation matrices as tensor of shape (..., 3, 3). |
|
""" |
|
return quaternion_to_matrix(axis_angle_to_quaternion(axis_angle)) |
|
|
|
|
|
def rigid_transform_Kabsch_3D_torch(A, B): |
|
|
|
|
|
|
|
assert A.shape[1] == B.shape[1] |
|
num_rows, num_cols = A.shape |
|
if num_rows != 3: |
|
raise Exception(f"matrix A is not 3xN, it is {num_rows}x{num_cols}") |
|
num_rows, num_cols = B.shape |
|
if num_rows != 3: |
|
raise Exception(f"matrix B is not 3xN, it is {num_rows}x{num_cols}") |
|
|
|
|
|
|
|
centroid_A = torch.mean(A, axis=1, keepdims=True) |
|
centroid_B = torch.mean(B, axis=1, keepdims=True) |
|
|
|
|
|
Am = A - centroid_A |
|
Bm = B - centroid_B |
|
|
|
H = Am @ Bm.T |
|
|
|
|
|
U, S, Vt = torch.linalg.svd(H) |
|
|
|
R = Vt.T @ U.T |
|
|
|
if torch.linalg.det(R) < 0: |
|
|
|
SS = torch.diag(torch.tensor([1.,1.,-1.], device=A.device)) |
|
R = (Vt.T @ SS) @ U.T |
|
assert math.fabs(torch.linalg.det(R) - 1) < 3e-3 |
|
|
|
t = -R @ centroid_A + centroid_B |
|
return R, t |
|
|