|
|
|
|
|
import sys |
|
import time |
|
from multiprocessing import Pool |
|
|
|
|
|
import copy |
|
import warnings |
|
from argparse import ArgumentParser |
|
|
|
from rdkit.Chem import AllChem, RemoveHs |
|
|
|
from feature_utils import save_cleaned_protein, read_mol |
|
from generation_utils import get_LAS_distance_constraint_mask, get_info_pred_distance, write_with_new_coords |
|
import logging |
|
from torch_geometric.loader import DataLoader |
|
from tqdm import tqdm |
|
from model import get_model |
|
|
|
import torch |
|
|
|
|
|
from data import TankBind_prediction |
|
|
|
import os |
|
import numpy as np |
|
import pandas as pd |
|
import rdkit.Chem as Chem |
|
from feature_utils import generate_sdf_from_smiles_using_rdkit |
|
from feature_utils import get_protein_feature |
|
from Bio.PDB import PDBParser |
|
from feature_utils import extract_torchdrug_feature_from_mol |
|
|
|
|
|
def read_strings_from_txt(path): |
|
|
|
with open(path) as file: |
|
lines = file.readlines() |
|
return [line.rstrip() for line in lines] |
|
|
|
|
|
def read_molecule(molecule_file, sanitize=False, calc_charges=False, remove_hs=False): |
|
if molecule_file.endswith('.mol2'): |
|
mol = Chem.MolFromMol2File(molecule_file, sanitize=False, removeHs=False) |
|
elif molecule_file.endswith('.sdf'): |
|
supplier = Chem.SDMolSupplier(molecule_file, sanitize=False, removeHs=False) |
|
mol = supplier[0] |
|
elif molecule_file.endswith('.pdbqt'): |
|
with open(molecule_file) as file: |
|
pdbqt_data = file.readlines() |
|
pdb_block = '' |
|
for line in pdbqt_data: |
|
pdb_block += '{}\n'.format(line[:66]) |
|
mol = Chem.MolFromPDBBlock(pdb_block, sanitize=False, removeHs=False) |
|
elif molecule_file.endswith('.pdb'): |
|
mol = Chem.MolFromPDBFile(molecule_file, sanitize=False, removeHs=False) |
|
else: |
|
return ValueError('Expect the format of the molecule_file to be ' |
|
'one of .mol2, .sdf, .pdbqt and .pdb, got {}'.format(molecule_file)) |
|
try: |
|
if sanitize or calc_charges: |
|
Chem.SanitizeMol(mol) |
|
|
|
if calc_charges: |
|
|
|
try: |
|
AllChem.ComputeGasteigerCharges(mol) |
|
except: |
|
warnings.warn('Unable to compute charges for the molecule.') |
|
|
|
if remove_hs: |
|
mol = Chem.RemoveHs(mol, sanitize=sanitize) |
|
except: |
|
return None |
|
|
|
return mol |
|
|
|
|
|
def parallel_save_prediction(arguments): |
|
dataset, y_pred_list, chosen,rdkit_mol_path, result_folder, name = arguments |
|
for idx, line in chosen.iterrows(): |
|
pocket_name = line['pocket_name'] |
|
compound_name = line['compound_name'] |
|
ligandName = compound_name.split("_")[1] |
|
dataset_index = line['dataset_index'] |
|
coords = dataset[dataset_index].coords.to('cpu') |
|
protein_nodes_xyz = dataset[dataset_index].node_xyz.to('cpu') |
|
n_compound = coords.shape[0] |
|
n_protein = protein_nodes_xyz.shape[0] |
|
y_pred = y_pred_list[dataset_index].reshape(n_protein, n_compound).to('cpu') |
|
compound_pair_dis_constraint = torch.cdist(coords, coords) |
|
mol = Chem.MolFromMolFile(rdkit_mol_path) |
|
LAS_distance_constraint_mask = get_LAS_distance_constraint_mask(mol).bool() |
|
pred_dist_info = get_info_pred_distance(coords, y_pred, protein_nodes_xyz, compound_pair_dis_constraint, |
|
LAS_distance_constraint_mask=LAS_distance_constraint_mask, |
|
n_repeat=1, show_progress=False) |
|
|
|
toFile = f'{result_folder}/{name}_tankbind_chosen.sdf' |
|
new_coords = pred_dist_info.sort_values("loss")['coords'].iloc[0].astype(np.double) |
|
write_with_new_coords(mol, new_coords, toFile) |
|
|
|
if __name__ == '__main__': |
|
tankbind_src_folder = "../tankbind" |
|
sys.path.insert(0, tankbind_src_folder) |
|
torch.set_num_threads(16) |
|
parser = ArgumentParser() |
|
parser.add_argument('--data_dir', type=str, default='/Users/hstark/projects/ligbind/data/PDBBind_processed', help='') |
|
parser.add_argument('--split_path', type=str, default='/Users/hstark/projects/ligbind/data/splits/timesplit_test', help='') |
|
parser.add_argument('--prank_path', type=str, default='/Users/hstark/projects/p2rank_2.3/prank', help='') |
|
parser.add_argument('--results_path', type=str, default='results/tankbind_results', help='') |
|
parser.add_argument('--skip_existing', action='store_true', default=False, help='') |
|
parser.add_argument('--skip_p2rank', action='store_true', default=False, help='') |
|
parser.add_argument('--skip_multiple_pocket_outputs', action='store_true', default=False, help='') |
|
parser.add_argument('--device', type=str, default='cpu', help='') |
|
parser.add_argument('--num_workers', type=int, default=1, help='') |
|
parser.add_argument('--parallel_id', type=int, default=0, help='') |
|
parser.add_argument('--parallel_tot', type=int, default=1, help='') |
|
args = parser.parse_args() |
|
|
|
device = args.device |
|
cache_path = "tankbind_cache" |
|
os.makedirs(cache_path, exist_ok=True) |
|
os.makedirs(args.results_path, exist_ok=True) |
|
|
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
model = get_model(0, logging, device) |
|
|
|
|
|
|
|
modelFile = f"{tankbind_src_folder}/../saved_models/self_dock.pt" |
|
|
|
model.load_state_dict(torch.load(modelFile, map_location=device)) |
|
_ = model.eval() |
|
batch_size = 5 |
|
names = read_strings_from_txt(args.split_path) |
|
if args.parallel_tot > 1: |
|
size = len(names) // args.parallel_tot + 1 |
|
names = names[args.parallel_id*size:(args.parallel_id+1)*size] |
|
rmsds = [] |
|
|
|
forward_pass_time = [] |
|
times_preprocess = [] |
|
times_inference = [] |
|
top_10_generation_time = [] |
|
top_1_generation_time = [] |
|
start_time = time.time() |
|
if not args.skip_p2rank: |
|
for name in names: |
|
if args.skip_existing and os.path.exists(f'{args.results_path}/{name}/{name}_tankbind_1.sdf'): continue |
|
print("Now processing: ", name) |
|
protein_path = f'{args.data_dir}/{name}/{name}_protein_processed.pdb' |
|
cleaned_protein_path = f"{cache_path}/{name}_protein_tankbind_cleaned.pdb" |
|
parser = PDBParser(QUIET=True) |
|
s = parser.get_structure(name, protein_path) |
|
c = s[0] |
|
clean_res_list, ligand_list = save_cleaned_protein(c, cleaned_protein_path) |
|
|
|
with open(f"{cache_path}/pdb_list_p2rank.txt", "w") as out: |
|
for name in names: |
|
out.write(f"{name}_protein_tankbind_cleaned.pdb\n") |
|
cmd = f"bash {args.prank_path} predict {cache_path}/pdb_list_p2rank.txt -o {cache_path}/p2rank -threads 4" |
|
os.system(cmd) |
|
times_preprocess.append(time.time() - start_time) |
|
p2_rank_time = time.time() - start_time |
|
|
|
|
|
|
|
|
|
list_to_parallelize = [] |
|
for name in tqdm(names): |
|
single_preprocess_time = time.time() |
|
if args.skip_existing and os.path.exists(f'{args.results_path}/{name}/{name}_tankbind_1.sdf'): continue |
|
print("Now processing: ", name) |
|
protein_path = f'{args.data_dir}/{name}/{name}_protein_processed.pdb' |
|
ligand_path = f"{args.data_dir}/{name}/{name}_ligand.sdf" |
|
cleaned_protein_path = f"{cache_path}/{name}_protein_tankbind_cleaned.pdb" |
|
rdkit_mol_path = f"{cache_path}/{name}_rdkit_ligand.sdf" |
|
|
|
parser = PDBParser(QUIET=True) |
|
s = parser.get_structure(name, protein_path) |
|
c = s[0] |
|
clean_res_list, ligand_list = save_cleaned_protein(c, cleaned_protein_path) |
|
lig, _ = read_mol(f"{args.data_dir}/{name}/{name}_ligand.sdf", f"{args.data_dir}/{name}/{name}_ligand.mol2") |
|
|
|
lig = RemoveHs(lig) |
|
smiles = Chem.MolToSmiles(lig) |
|
generate_sdf_from_smiles_using_rdkit(smiles, rdkit_mol_path, shift_dis=0) |
|
|
|
parser = PDBParser(QUIET=True) |
|
s = parser.get_structure("x", cleaned_protein_path) |
|
res_list = list(s.get_residues()) |
|
|
|
protein_dict = {} |
|
protein_dict[name] = get_protein_feature(res_list) |
|
compound_dict = {} |
|
|
|
mol = Chem.MolFromMolFile(rdkit_mol_path) |
|
compound_dict[name + f"_{name}" + "_rdkit"] = extract_torchdrug_feature_from_mol(mol, has_LAS_mask=True) |
|
|
|
info = [] |
|
for compound_name in list(compound_dict.keys()): |
|
|
|
com = ",".join([str(a.round(3)) for a in protein_dict[name][0].mean(axis=0).numpy()]) |
|
info.append([name, compound_name, "protein_center", com]) |
|
|
|
p2rankFile = f"{cache_path}/p2rank/{name}_protein_tankbind_cleaned.pdb_predictions.csv" |
|
pocket = pd.read_csv(p2rankFile) |
|
pocket.columns = pocket.columns.str.strip() |
|
pocket_coms = pocket[['center_x', 'center_y', 'center_z']].values |
|
for ith_pocket, com in enumerate(pocket_coms): |
|
com = ",".join([str(a.round(3)) for a in com]) |
|
info.append([name, compound_name, f"pocket_{ith_pocket + 1}", com]) |
|
info = pd.DataFrame(info, columns=['protein_name', 'compound_name', 'pocket_name', 'pocket_com']) |
|
|
|
dataset_path = f"{cache_path}/{name}_dataset/" |
|
os.system(f"rm -r {dataset_path}") |
|
os.system(f"mkdir -p {dataset_path}") |
|
dataset = TankBind_prediction(dataset_path, data=info, protein_dict=protein_dict, compound_dict=compound_dict) |
|
|
|
|
|
times_preprocess.append(time.time() - single_preprocess_time) |
|
single_forward_pass_time = time.time() |
|
data_loader = DataLoader(dataset, batch_size=batch_size, follow_batch=['x', 'y', 'compound_pair'], shuffle=False, |
|
num_workers=0) |
|
affinity_pred_list = [] |
|
y_pred_list = [] |
|
for data in tqdm(data_loader): |
|
data = data.to(device) |
|
y_pred, affinity_pred = model(data) |
|
affinity_pred_list.append(affinity_pred.detach().cpu()) |
|
for i in range(data.y_batch.max() + 1): |
|
y_pred_list.append((y_pred[data['y_batch'] == i]).detach().cpu()) |
|
|
|
affinity_pred_list = torch.cat(affinity_pred_list) |
|
forward_pass_time.append(time.time() - single_forward_pass_time) |
|
output_info = copy.deepcopy(dataset.data) |
|
output_info['affinity'] = affinity_pred_list |
|
output_info['dataset_index'] = range(len(output_info)) |
|
output_info_sorted = output_info.sort_values('affinity', ascending=False) |
|
|
|
|
|
result_folder = f'{args.results_path}/{name}' |
|
os.makedirs(result_folder, exist_ok=True) |
|
output_info_sorted.to_csv(f"{result_folder}/output_info_sorted_by_affinity.csv") |
|
|
|
if not args.skip_multiple_pocket_outputs: |
|
for idx, (dataframe_idx, line) in enumerate(copy.deepcopy(output_info_sorted).iterrows()): |
|
single_top10_generation_time = time.time() |
|
pocket_name = line['pocket_name'] |
|
compound_name = line['compound_name'] |
|
ligandName = compound_name.split("_")[1] |
|
coords = dataset[dataframe_idx].coords.to('cpu') |
|
protein_nodes_xyz = dataset[dataframe_idx].node_xyz.to('cpu') |
|
n_compound = coords.shape[0] |
|
n_protein = protein_nodes_xyz.shape[0] |
|
y_pred = y_pred_list[dataframe_idx].reshape(n_protein, n_compound).to('cpu') |
|
y = dataset[dataframe_idx].dis_map.reshape(n_protein, n_compound).to('cpu') |
|
compound_pair_dis_constraint = torch.cdist(coords, coords) |
|
mol = Chem.MolFromMolFile(rdkit_mol_path) |
|
LAS_distance_constraint_mask = get_LAS_distance_constraint_mask(mol).bool() |
|
pred_dist_info = get_info_pred_distance(coords, y_pred, protein_nodes_xyz, compound_pair_dis_constraint, |
|
LAS_distance_constraint_mask=LAS_distance_constraint_mask, |
|
n_repeat=1, show_progress=False) |
|
|
|
toFile = f'{result_folder}/{name}_tankbind_{idx}.sdf' |
|
new_coords = pred_dist_info.sort_values("loss")['coords'].iloc[0].astype(np.double) |
|
write_with_new_coords(mol, new_coords, toFile) |
|
if idx < 10: |
|
top_10_generation_time.append(time.time() - single_top10_generation_time) |
|
if idx == 0: |
|
top_1_generation_time.append(time.time() - single_top10_generation_time) |
|
|
|
output_info_chosen = copy.deepcopy(dataset.data) |
|
output_info_chosen['affinity'] = affinity_pred_list |
|
output_info_chosen['dataset_index'] = range(len(output_info_chosen)) |
|
chosen = output_info_chosen.loc[ |
|
output_info_chosen.groupby(['protein_name', 'compound_name'], sort=False)['affinity'].agg( |
|
'idxmax')].reset_index() |
|
|
|
list_to_parallelize.append((dataset, y_pred_list, chosen, rdkit_mol_path, result_folder, name)) |
|
|
|
chosen_generation_start_time = time.time() |
|
if args.num_workers > 1: |
|
p = Pool(args.num_workers, maxtasksperchild=1) |
|
p.__enter__() |
|
with tqdm(total=len(list_to_parallelize), desc=f'running optimization {i}/{len(list_to_parallelize)}') as pbar: |
|
map_fn = p.imap_unordered if args.num_workers > 1 else map |
|
for t in map_fn(parallel_save_prediction, list_to_parallelize): |
|
pbar.update() |
|
if args.num_workers > 1: p.__exit__(None, None, None) |
|
chosen_generation_time = time.time() - chosen_generation_start_time |
|
""" |
|
lig, _ = read_mol(f"{args.data_dir}/{name}/{name}_ligand.sdf", f"{args.data_dir}/{name}/{name}_ligand.mol2") |
|
sm = Chem.MolToSmiles(lig) |
|
m_order = list(lig.GetPropsAsDict(includePrivate=True, includeComputed=True)['_smilesAtomOutputOrder']) |
|
lig = Chem.RenumberAtoms(lig, m_order) |
|
lig = Chem.RemoveAllHs(lig) |
|
lig = RemoveHs(lig) |
|
true_ligand_pos = np.array(lig.GetConformer().GetPositions()) |
|
|
|
toFile = f'{result_folder}/{name}_tankbind_chosen.sdf' |
|
mol_pred, _ = read_mol(toFile, None) |
|
sm = Chem.MolToSmiles(mol_pred) |
|
m_order = list(mol_pred.GetPropsAsDict(includePrivate=True, includeComputed=True)['_smilesAtomOutputOrder']) |
|
mol_pred = Chem.RenumberAtoms(mol_pred, m_order) |
|
mol_pred = RemoveHs(mol_pred) |
|
mol_pred_pos = np.array(mol_pred.GetConformer().GetPositions()) |
|
rmsds.append(np.sqrt(((true_ligand_pos - mol_pred_pos) ** 2).sum(axis=1).mean(axis=0))) |
|
print(np.sqrt(((true_ligand_pos - mol_pred_pos) ** 2).sum(axis=1).mean(axis=0))) |
|
""" |
|
forward_pass_time = np.array(forward_pass_time).sum() |
|
times_preprocess = np.array(times_preprocess).sum() |
|
times_inference = np.array(times_inference).sum() |
|
top_10_generation_time = np.array(top_10_generation_time).sum() |
|
top_1_generation_time = np.array(top_1_generation_time).sum() |
|
|
|
rmsds = np.array(rmsds) |
|
|
|
print(f'forward_pass_time: {forward_pass_time}') |
|
print(f'times_preprocess: {times_preprocess}') |
|
print(f'times_inference: {times_inference}') |
|
print(f'top_10_generation_time: {top_10_generation_time}') |
|
print(f'top_1_generation_time: {top_1_generation_time}') |
|
print(f'chosen_generation_time: {chosen_generation_time}') |
|
print(f'rmsds_below_2: {(100 * (rmsds < 2).sum() / len(rmsds))}') |
|
print(f'p2rank Time: {p2_rank_time}') |
|
print( |
|
f'total_time: ' |
|
f'{forward_pass_time + times_preprocess + times_inference + top_10_generation_time + top_1_generation_time + p2_rank_time}') |
|
|
|
with open(os.path.join(args.results_path, 'tankbind_log.log'), 'w') as file: |
|
file.write(f'forward_pass_time: {forward_pass_time}') |
|
file.write(f'times_preprocess: {times_preprocess}') |
|
file.write(f'times_inference: {times_inference}') |
|
file.write(f'top_10_generation_time: {top_10_generation_time}') |
|
file.write(f'top_1_generation_time: {top_1_generation_time}') |
|
file.write(f'rmsds_below_2: {(100 * (rmsds < 2).sum() / len(rmsds))}') |
|
file.write(f'p2rank Time: {p2_rank_time}') |
|
file.write(f'total_time: {forward_pass_time + times_preprocess + times_inference + top_10_generation_time + top_1_generation_time + p2_rank_time}') |
|
|