Spaces:
Runtime error
Runtime error
Commit
·
a40cc28
1
Parent(s):
26177cc
Update app.py
Browse files
app.py
CHANGED
@@ -3,13 +3,13 @@ import gradio as gr
|
|
3 |
from PIL import Image
|
4 |
from transformers import AutoProcessor, AutoModelForCausalLM
|
5 |
import spacy
|
6 |
-
|
7 |
device='cpu'
|
8 |
|
9 |
processor = AutoProcessor.from_pretrained("microsoft/git-base")
|
10 |
model = AutoModelForCausalLM.from_pretrained("nkasmanoff/sky-scribe").to(device)
|
11 |
|
12 |
-
|
13 |
|
14 |
def predict(image,max_length=50,device='cpu'):
|
15 |
pixel_values = processor(images=image, return_tensors="pt").to(device).pixel_values
|
@@ -19,82 +19,6 @@ def predict(image,max_length=50,device='cpu'):
|
|
19 |
return generated_caption
|
20 |
|
21 |
|
22 |
-
def get_entities(sent):
|
23 |
-
## chunk 1
|
24 |
-
ent1 = ""
|
25 |
-
ent2 = ""
|
26 |
-
|
27 |
-
prv_tok_dep = "" # dependency tag of previous token in the sentence
|
28 |
-
prv_tok_text = "" # previous token in the sentence
|
29 |
-
|
30 |
-
prefix = ""
|
31 |
-
modifier = ""
|
32 |
-
|
33 |
-
#############################################################
|
34 |
-
|
35 |
-
for tok in nlp(sent):
|
36 |
-
## chunk 2
|
37 |
-
# if token is a punctuation mark then move on to the next token
|
38 |
-
if tok.dep_ != "punct":
|
39 |
-
# check: token is a compound word or not
|
40 |
-
if tok.dep_ == "compound":
|
41 |
-
prefix = tok.text
|
42 |
-
# if the previous word was also a 'compound' then add the current word to it
|
43 |
-
if prv_tok_dep == "compound":
|
44 |
-
prefix = prv_tok_text + " " + tok.text
|
45 |
-
|
46 |
-
# check: token is a modifier or not
|
47 |
-
if tok.dep_.endswith("mod") == True:
|
48 |
-
modifier = tok.text
|
49 |
-
# if the previous word was also a 'compound' then add the current word to it
|
50 |
-
if prv_tok_dep == "compound":
|
51 |
-
modifier = prv_tok_text + " " + tok.text
|
52 |
-
|
53 |
-
## chunk 3
|
54 |
-
if tok.dep_.find("subj") == True:
|
55 |
-
ent1 = modifier + " " + prefix + " " + tok.text
|
56 |
-
prefix = ""
|
57 |
-
modifier = ""
|
58 |
-
prv_tok_dep = ""
|
59 |
-
prv_tok_text = ""
|
60 |
-
|
61 |
-
## chunk 4
|
62 |
-
if tok.dep_.find("obj") == True:
|
63 |
-
ent2 = modifier + " " + prefix + " " + tok.text
|
64 |
-
|
65 |
-
## chunk 5
|
66 |
-
# update variables
|
67 |
-
prv_tok_dep = tok.dep_
|
68 |
-
prv_tok_text = tok.text
|
69 |
-
#############################################################
|
70 |
-
|
71 |
-
return [ent1.strip(), ent2.strip()]
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
def get_relation(sent):
|
77 |
-
|
78 |
-
doc = nlp(sent)
|
79 |
-
|
80 |
-
# Matcher class object
|
81 |
-
matcher = Matcher(nlp.vocab)
|
82 |
-
|
83 |
-
#define the pattern
|
84 |
-
pattern = [{'DEP':'ROOT'},
|
85 |
-
{'DEP':'prep','OP':"?"},
|
86 |
-
{'DEP':'agent','OP':"?"},
|
87 |
-
{'POS':'ADJ','OP':"?"}]
|
88 |
-
|
89 |
-
matcher.add('matching_pattern', patterns=[pattern])
|
90 |
-
matches = matcher(doc)
|
91 |
-
k = len(matches) - 1
|
92 |
-
|
93 |
-
span = doc[matches[k][1]:matches[k][2]]
|
94 |
-
|
95 |
-
return(span.text)
|
96 |
-
|
97 |
-
|
98 |
|
99 |
input = gr.inputs.Image(label="Please upload an image", type = 'pil', optional=True)
|
100 |
output = gr.outputs.Textbox(type="text",label="Captions")
|
|
|
3 |
from PIL import Image
|
4 |
from transformers import AutoProcessor, AutoModelForCausalLM
|
5 |
import spacy
|
6 |
+
|
7 |
device='cpu'
|
8 |
|
9 |
processor = AutoProcessor.from_pretrained("microsoft/git-base")
|
10 |
model = AutoModelForCausalLM.from_pretrained("nkasmanoff/sky-scribe").to(device)
|
11 |
|
12 |
+
|
13 |
|
14 |
def predict(image,max_length=50,device='cpu'):
|
15 |
pixel_values = processor(images=image, return_tensors="pt").to(device).pixel_values
|
|
|
19 |
return generated_caption
|
20 |
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
input = gr.inputs.Image(label="Please upload an image", type = 'pil', optional=True)
|
24 |
output = gr.outputs.Textbox(type="text",label="Captions")
|