File size: 35,381 Bytes
87337b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 |
#
#
# Agora Real Time Engagement
# Created by Wei Hu in 2024-08.
# Copyright (c) 2024 Agora IO. All rights reserved.
#
#
import asyncio
import base64
import io
import json
from enum import Enum
import traceback
import time
import numpy as np
from datetime import datetime
from typing import Iterable
from pydub import AudioSegment
from ten import (
AudioFrame,
AsyncTenEnv,
Cmd,
StatusCode,
CmdResult,
Data,
)
from ten.audio_frame import AudioFrameDataFmt
from ten_ai_base.const import CMD_PROPERTY_RESULT, CMD_TOOL_CALL
from dataclasses import dataclass
from ten_ai_base.config import BaseConfig
from ten_ai_base.chat_memory import (
ChatMemory,
EVENT_MEMORY_EXPIRED,
EVENT_MEMORY_APPENDED,
)
from ten_ai_base.usage import (
LLMUsage,
LLMCompletionTokensDetails,
LLMPromptTokensDetails,
)
from ten_ai_base.types import (
LLMToolMetadata,
LLMToolResult,
LLMChatCompletionContentPartParam,
)
from ten_ai_base.llm import AsyncLLMBaseExtension
from .realtime.connection import RealtimeApiConnection
from .realtime.struct import (
AudioFormats,
ItemCreate,
SessionCreated,
ItemCreated,
UserMessageItemParam,
AssistantMessageItemParam,
ItemInputAudioTranscriptionCompleted,
ItemInputAudioTranscriptionFailed,
ResponseCreated,
ResponseDone,
ResponseAudioTranscriptDelta,
ResponseTextDelta,
ResponseAudioTranscriptDone,
ResponseTextDone,
ResponseOutputItemDone,
ResponseOutputItemAdded,
ResponseAudioDelta,
ResponseAudioDone,
InputAudioBufferSpeechStarted,
InputAudioBufferSpeechStopped,
ResponseFunctionCallArgumentsDone,
ErrorMessage,
ItemDelete,
SessionUpdate,
SessionUpdateParams,
InputAudioTranscription,
ContentType,
FunctionCallOutputItemParam,
ResponseCreate,
)
CMD_IN_FLUSH = "flush"
CMD_IN_ON_USER_JOINED = "on_user_joined"
CMD_IN_ON_USER_LEFT = "on_user_left"
CMD_OUT_FLUSH = "flush"
class Role(str, Enum):
User = "user"
Assistant = "assistant"
@dataclass
class GLMRealtimeConfig(BaseConfig):
base_uri: str = "wss://open.bigmodel.cn"
api_key: str = ""
path: str = "/api/paas/v4/realtime"
prompt: str = ""
temperature: float = 0.5
max_tokens: int = 1024
server_vad: bool = True
audio_out: bool = True
input_transcript: bool = True
sample_rate: int = 24000
stream_id: int = 0
dump: bool = False
max_history: int = 20
enable_storage: bool = False
greeting: str = ""
language: str = "en-US"
def build_ctx(self) -> dict:
return {
}
class GLMRealtimeExtension(AsyncLLMBaseExtension):
def __init__(self, name: str):
super().__init__(name)
self.ten_env: AsyncTenEnv = None
self.conn = None
self.session = None
self.session_id = None
self.config: GLMRealtimeConfig = None
self.stopped: bool = False
self.connected: bool = False
self.buffer: bytearray = b""
self.memory: ChatMemory = None
self.total_usage: LLMUsage = LLMUsage()
self.users_count = 0
self.stream_id: int = 0
self.remote_stream_id: int = 0
self.channel_name: str = ""
self.audio_len_threshold: int = 5120
self.completion_times = []
self.connect_times = []
self.first_token_times = []
self.transcript: str = ""
self.ctx: dict = {}
self.input_end = time.time()
self.input_audio_queue = asyncio.Queue()
async def on_init(self, ten_env: AsyncTenEnv) -> None:
await super().on_init(ten_env)
ten_env.log_debug("on_init")
async def on_start(self, ten_env: AsyncTenEnv) -> None:
await super().on_start(ten_env)
ten_env.log_debug("on_start")
self.ten_env = ten_env
self.loop = asyncio.get_event_loop()
self.loop.create_task(self._on_process_audio())
self.config = await GLMRealtimeConfig.create_async(ten_env=ten_env)
ten_env.log_info(f"config: {self.config}")
if not self.config.api_key:
ten_env.log_error("api_key is required")
return
try:
self.memory = ChatMemory(self.config.max_history)
if self.config.enable_storage:
[result, _] = await ten_env.send_cmd(Cmd.create("retrieve"))
if result.get_status_code() == StatusCode.OK:
try:
history = json.loads(result.get_property_string("response"))
for i in history:
self.memory.put(i)
ten_env.log_info(f"on retrieve context {history}")
except Exception as e:
ten_env.log_error(f"Failed to handle retrieve result {e}")
else:
ten_env.log_warn("Failed to retrieve content")
self.memory.on(EVENT_MEMORY_EXPIRED, self._on_memory_expired)
self.memory.on(EVENT_MEMORY_APPENDED, self._on_memory_appended)
self.ctx = self.config.build_ctx()
self.conn = RealtimeApiConnection(
ten_env=ten_env,
base_uri=self.config.base_uri,
path=self.config.path,
api_key=self.config.api_key,
)
ten_env.log_info("Finish init client")
self.loop.create_task(self._loop())
except Exception as e:
traceback.print_exc()
self.ten_env.log_error(f"Failed to init client {e}")
async def on_stop(self, ten_env: AsyncTenEnv) -> None:
await super().on_stop(ten_env)
ten_env.log_info("on_stop")
self.input_audio_queue.put_nowait(None)
self.stopped = True
async def on_audio_frame(self, _: AsyncTenEnv, audio_frame: AudioFrame) -> None:
try:
stream_id = audio_frame.get_property_int("stream_id")
if self.channel_name == "":
self.channel_name = audio_frame.get_property_string("channel")
if self.remote_stream_id == 0:
self.remote_stream_id = stream_id
frame_buf = audio_frame.get_buf()
self.input_audio_queue.put_nowait(frame_buf)
if not self.config.server_vad:
self.input_end = time.time()
except Exception as e:
traceback.print_exc()
self.ten_env.log_error(f"GLMV2VExtension on audio frame failed {e}")
async def on_cmd(self, ten_env: AsyncTenEnv, cmd: Cmd) -> None:
cmd_name = cmd.get_name()
ten_env.log_debug("on_cmd name {}".format(cmd_name))
status = StatusCode.OK
detail = "success"
if cmd_name == CMD_IN_FLUSH:
# Will only flush if it is client side vad
await self._flush()
await ten_env.send_cmd(Cmd.create(CMD_OUT_FLUSH))
ten_env.log_info("on flush")
elif cmd_name == CMD_IN_ON_USER_JOINED:
self.users_count += 1
# Send greeting when first user joined
if self.users_count == 1:
await self._greeting()
elif cmd_name == CMD_IN_ON_USER_LEFT:
self.users_count -= 1
else:
# Register tool
await super().on_cmd(ten_env, cmd)
return
cmd_result = CmdResult.create(status)
cmd_result.set_property_string("detail", detail)
await ten_env.return_result(cmd_result, cmd)
# Not support for now
async def on_data(self, ten_env: AsyncTenEnv, data: Data) -> None:
pass
async def _on_process_audio(self) -> None:
while True:
try:
audio_frame = await self.input_audio_queue.get()
if audio_frame is None:
break
self._dump_audio_if_need(audio_frame, Role.User)
if self.connected:
wav_buff = self.convert_to_wav_in_memory(audio_frame)
await self.conn.send_audio_data(wav_buff)
except Exception as e:
traceback.print_exc()
self.ten_env.log_error(f"Error processing audio frame {e}")
async def _loop(self):
def get_time_ms() -> int:
current_time = datetime.now()
return current_time.microsecond // 1000
try:
start_time = time.time()
await self.conn.connect()
self.connect_times.append(time.time() - start_time)
item_id = "" # For truncate
response_id = ""
# content_index = 0
relative_start_ms = get_time_ms()
flushed = set()
self.ten_env.log_info("Client loop started")
async for message in self.conn.listen():
try:
# self.ten_env.log_info(f"Received message: {message.type}")
match message:
case SessionCreated():
self.ten_env.log_info(
f"Session is created: {message.session}"
)
self.session_id = message.session.id
self.session = message.session
await self._update_session()
history = self.memory.get()
for h in history:
if h["role"] == "user":
await self.conn.send_request(
ItemCreate(
item=UserMessageItemParam(
content=[
{
"type": ContentType.InputText,
"text": h["content"],
}
]
)
)
)
elif h["role"] == "assistant":
await self.conn.send_request(
ItemCreate(
item=AssistantMessageItemParam(
content=[
{
"type": ContentType.InputText,
"text": h["content"],
}
]
)
)
)
self.ten_env.log_info(f"Finish send history {history}")
self.memory.clear()
if not self.connected:
self.connected = True
await self._greeting()
case ItemInputAudioTranscriptionCompleted():
self.ten_env.log_info(
f"On request transcript {message.transcript}"
)
self._send_transcript(message.transcript, Role.User, True)
self.memory.put(
{
"role": "user",
"content": message.transcript,
# "id": message.item_id,
}
)
case ItemInputAudioTranscriptionFailed():
self.ten_env.log_warn(
f"On request transcript failed {message.item_id} {message.error}"
)
case ItemCreated():
self.ten_env.log_info(f"On item created {message.item}")
case ResponseCreated():
response_id = message.response.id
self.ten_env.log_info(f"On response created {response_id}")
case ResponseDone():
msg_resp_id = message.response.id
status = message.response.status
if msg_resp_id == response_id:
response_id = ""
self.ten_env.log_info(
f"On response done {msg_resp_id} {status} {message.response.usage}"
)
# workaround as GLM does not have responseAudioTranscriptDone
self.transcript = ""
self._send_transcript("", Role.Assistant, True)
if message.response.usage:
pass
# await self._update_usage(message.response.usage)
case ResponseAudioTranscriptDelta():
self.ten_env.log_info(
f"On response transcript delta {message.output_index} {message.content_index} {message.delta}"
)
if message.response_id in flushed:
self.ten_env.log_warn(
f"On flushed transcript delta {message.output_index} {message.content_index} {message.delta}"
)
continue
self._send_transcript(message.delta, Role.Assistant, False)
case ResponseTextDelta():
self.ten_env.log_info(
f"On response text delta {message.output_index} {message.content_index} {message.delta}"
)
# if message.response_id in flushed:
# self.ten_env.log_warn(
# f"On flushed text delta {message.output_index} {message.content_index} {message.delta}"
# )
# continue
# if item_id != message.item_id:
# item_id = message.item_id
# self.first_token_times.append(
# time.time() - self.input_end
# )
self._send_transcript(message.delta, Role.Assistant, False)
case ResponseAudioTranscriptDone():
# this is not triggering by GLM
self.ten_env.log_info(
f"On response transcript done {message.output_index} {message.content_index} {message.transcript}"
)
if message.response_id in flushed:
self.ten_env.log_warn(
"On flushed transcript done"
)
continue
self.memory.put(
{
"role": "assistant",
"content": message.transcript,
# "id": message.item_id,
}
)
self.transcript = ""
self._send_transcript("", Role.Assistant, True)
case ResponseTextDone():
self.ten_env.log_info(
f"On response text done {message.output_index} {message.content_index} {message.text}"
)
# if message.response_id in flushed:
# self.ten_env.log_warn(
# f"On flushed text done {message.response_id}"
# )
# continue
self.completion_times.append(time.time() - self.input_end)
self.transcript = ""
self._send_transcript("", Role.Assistant, True)
case ResponseOutputItemDone():
self.ten_env.log_info(f"Output item done {message.item}")
case ResponseOutputItemAdded():
self.ten_env.log_info(
f"Output item added {message.output_index} {message.item}"
)
case ResponseAudioDelta():
# if message.response_id in flushed:
# self.ten_env.log_warn(
# f"On flushed audio delta {message.response_id} {message.item_id} {message.content_index}"
# )
# continue
# if item_id != message.item_id:
# item_id = message.item_id
# self.first_token_times.append(
# time.time() - self.input_end
# )
# content_index = message.content_index
await self._on_audio_delta(message.delta)
case ResponseAudioDone():
self.completion_times.append(time.time() - self.input_end)
case InputAudioBufferSpeechStarted():
self.ten_env.log_info(
f"On server listening, in response {response_id}, last item {item_id}"
)
# Tuncate the on-going audio stream
# end_ms = get_time_ms() - relative_start_ms
# if item_id:
# truncate = ItemTruncate(
# item_id=item_id,
# content_index=content_index,
# audio_end_ms=end_ms,
# )
# await self.conn.send_request(truncate)
if self.config.server_vad:
await self._flush()
if response_id and self.transcript:
transcript = self.transcript + "[interrupted]"
self._send_transcript(transcript, Role.Assistant, True)
self.transcript = ""
# memory leak, change to lru later
flushed.add(response_id)
item_id = ""
case InputAudioBufferSpeechStopped():
# Only for server vad
self.input_end = time.time()
relative_start_ms = get_time_ms() - message.audio_end_ms
self.ten_env.log_info(
f"On server stop listening, {message.audio_end_ms}, relative {relative_start_ms}"
)
case ResponseFunctionCallArgumentsDone():
# tool_call_id = message.call_id
name = message.name
arguments = message.arguments
self.ten_env.log_info(f"need to call func {name}")
self.loop.create_task(
self._handle_tool_call(name, arguments)
)
case ErrorMessage():
self.ten_env.log_error(
f"Error message received: {message.error}"
)
case _:
self.ten_env.log_debug(f"Not handled message {message}")
except Exception as e:
traceback.print_exc()
self.ten_env.log_error(f"Error processing message: {message} {e}")
self.ten_env.log_info("Client loop finished")
except Exception as e:
traceback.print_exc()
self.ten_env.log_error(f"Failed to handle loop {e}")
# clear so that new session can be triggered
self.connected = False
self.remote_stream_id = 0
if not self.stopped:
await self.conn.close()
await asyncio.sleep(0.5)
self.ten_env.log_info("Reconnect")
self.conn = RealtimeApiConnection(
ten_env=self.ten_env,
base_uri=self.config.base_uri,
path=self.config.path,
api_key=self.config.api_key,
)
self.loop.create_task(self._loop())
async def _on_memory_expired(self, message: dict) -> None:
self.ten_env.log_info(f"Memory expired: {message}")
item_id = message.get("item_id")
if item_id:
await self.conn.send_request(ItemDelete(item_id=item_id))
async def _on_memory_appended(self, message: dict) -> None:
self.ten_env.log_info(f"Memory appended: {message}")
if not self.config.enable_storage:
return
role = message.get("role")
stream_id = self.remote_stream_id if role == Role.User else 0
try:
d = Data.create("append")
d.set_property_string("text", message.get("content"))
d.set_property_string("role", role)
d.set_property_int("stream_id", stream_id)
asyncio.create_task(self.ten_env.send_data(d))
except Exception as e:
self.ten_env.log_error(f"Error send append_context data {message} {e}")
# Direction: IN
def convert_to_wav_in_memory(self, buff: bytearray) -> bytes:
"""
Converts the accumulated PCM data to WAV format in-memory.
Returns the WAV data as bytes.
"""
# Convert PCM data to numpy array of int16 type
pcm_data = np.frombuffer(buff, dtype=np.int16)
# Use pydub to create an AudioSegment
audio_segment = AudioSegment(
pcm_data.tobytes(),
frame_rate=24000,
sample_width=2,
channels=1
)
# Create an in-memory stream to store the WAV file
memory_stream = io.BytesIO()
# Export the AudioSegment to the in-memory stream as WAV
audio_segment.export(memory_stream, format="wav")
# Return the WAV data as bytes
wav_bytes = memory_stream.getvalue()
return wav_bytes
async def _update_session(self) -> None:
tools = []
def tool_dict(tool: LLMToolMetadata):
t = {
"type": "function",
"name": tool.name,
"description": tool.description,
"parameters": {
"type": "object",
"properties": {},
"required": [],
"additionalProperties": False,
},
}
for param in tool.parameters:
t["parameters"]["properties"][param.name] = {
"type": param.type,
"description": param.description,
}
if param.required:
t["parameters"]["required"].append(param.name)
return t
if self.available_tools:
tool_prompt = "You have several tools that you can get help from:\n"
for t in self.available_tools:
tool_prompt += f"- ***{t.name}***: {t.description}"
self.ctx["tools"] = tool_prompt
tools = [tool_dict(t) for t in self.available_tools]
prompt = self._replace(self.config.prompt)
self.ten_env.log_info(f"update session {prompt} {tools}")
su = SessionUpdate(
session=SessionUpdateParams(
instructions=prompt,
input_audio_format=AudioFormats.WAV24,
output_audio_format=AudioFormats.PCM,
tools=tools,
)
)
if self.config.audio_out:
# su.session.voice = self.config.voice
pass
else:
su.session.modalities = ["text"]
if self.config.input_transcript:
su.session.input_audio_transcription = InputAudioTranscription(
model="whisper-1"
)
await self.conn.send_request(su)
async def on_tools_update(self, _: AsyncTenEnv, tool: LLMToolMetadata) -> None:
"""Called when a new tool is registered. Implement this method to process the new tool."""
self.ten_env.log_info(f"on tools update {tool}")
# await self._update_session()
def _replace(self, prompt: str) -> str:
result = prompt
for token, value in self.ctx.items():
result = result.replace("{" + token + "}", value)
return result
# Direction: OUT
async def _on_audio_delta(self, delta: bytes) -> None:
audio_data = base64.b64decode(delta)
self.ten_env.log_debug(
f"on_audio_delta audio_data len {len(audio_data)} samples {len(audio_data) // 2}"
)
self._dump_audio_if_need(audio_data, Role.Assistant)
f = AudioFrame.create("pcm_frame")
f.set_sample_rate(self.config.sample_rate)
f.set_bytes_per_sample(2)
f.set_number_of_channels(1)
f.set_data_fmt(AudioFrameDataFmt.INTERLEAVE)
f.set_samples_per_channel(len(audio_data) // 2)
f.alloc_buf(len(audio_data))
buff = f.lock_buf()
buff[:] = audio_data
f.unlock_buf(buff)
await self.ten_env.send_audio_frame(f)
def _send_transcript(self, content: str, role: Role, is_final: bool) -> None:
def is_punctuation(char):
if char in [",", ",", ".", "。", "?", "?", "!", "!"]:
return True
return False
def parse_sentences(sentence_fragment, content):
sentences = []
current_sentence = sentence_fragment
for char in content:
current_sentence += char
if is_punctuation(char):
# Check if the current sentence contains non-punctuation characters
stripped_sentence = current_sentence
if any(c.isalnum() for c in stripped_sentence):
sentences.append(stripped_sentence)
current_sentence = "" # Reset for the next sentence
remain = current_sentence # Any remaining characters form the incomplete sentence
return sentences, remain
def send_data(
ten_env: AsyncTenEnv,
sentence: str,
stream_id: int,
role: str,
is_final: bool,
):
try:
d = Data.create("text_data")
d.set_property_string("text", sentence)
d.set_property_bool("end_of_segment", is_final)
d.set_property_string("role", role)
d.set_property_int("stream_id", stream_id)
ten_env.log_info(
f"send transcript text [{sentence}] stream_id {stream_id} is_final {is_final} end_of_segment {is_final} role {role}"
)
asyncio.create_task(ten_env.send_data(d))
except Exception as e:
ten_env.log_error(
f"Error send text data {role}: {sentence} {is_final} {e}"
)
stream_id = self.remote_stream_id if role == Role.User else 0
try:
if role == Role.Assistant and not is_final:
sentences, self.transcript = parse_sentences(self.transcript, content)
for s in sentences:
send_data(self.ten_env, s, stream_id, role, is_final)
else:
send_data(self.ten_env, content, stream_id, role, is_final)
except Exception as e:
self.ten_env.log_error(
f"Error send text data {role}: {content} {is_final} {e}"
)
def _dump_audio_if_need(self, buf: bytearray, role: Role) -> None:
if not self.config.dump:
return
with open("{}_{}.pcm".format(role, self.channel_name), "ab") as dump_file:
dump_file.write(buf)
async def _handle_tool_call(
self, name: str, arguments: str
) -> None:
self.ten_env.log_info(f"_handle_tool_call {name} {arguments}")
cmd: Cmd = Cmd.create(CMD_TOOL_CALL)
cmd.set_property_string("name", name)
cmd.set_property_from_json("arguments", arguments)
[result, _] = await self.ten_env.send_cmd(cmd)
tool_response = ItemCreate(
item=FunctionCallOutputItemParam(
output='{"success":false}',
)
)
if result.get_status_code() == StatusCode.OK:
tool_result: LLMToolResult = json.loads(
result.get_property_to_json(CMD_PROPERTY_RESULT)
)
result_content = tool_result["content"]
tool_response.item.output = json.dumps(
self._convert_to_content_parts(result_content)
)
self.ten_env.log_info(f"tool_result: {tool_result}")
else:
self.ten_env.log_error("Tool call failed")
await self.conn.send_request(tool_response)
await self.conn.send_request(ResponseCreate())
self.ten_env.log_info(f"_remote_tool_call finish {name} {arguments}")
def _greeting_text(self) -> str:
text = "Hi, there."
if self.config.language == "zh-CN":
text = "你好。"
elif self.config.language == "ja-JP":
text = "こんにちは"
elif self.config.language == "ko-KR":
text = "안녕하세요"
return text
def _convert_tool_params_to_dict(self, tool: LLMToolMetadata):
json_dict = {"type": "object", "properties": {}, "required": []}
for param in tool.parameters:
json_dict["properties"][param.name] = {
"type": param.type,
"description": param.description,
}
if param.required:
json_dict["required"].append(param.name)
return json_dict
def _convert_to_content_parts(
self, content: Iterable[LLMChatCompletionContentPartParam]
):
content_parts = []
if isinstance(content, str):
content_parts.append({"type": "text", "text": content})
else:
for part in content:
# Only text content is supported currently for v2v model
if part["type"] == "text":
content_parts.append(part)
return content_parts
async def _greeting(self) -> None:
if self.connected and self.users_count == 1:
# somehow it's not working
text = self._greeting_text()
if self.config.greeting:
text = "Say '" + self.config.greeting + "' to me."
self.ten_env.log_info(f"send greeting {text}")
# await self.conn.send_request(
# ItemCreate(
# item=UserMessageItemParam(
# content=[{"type": ContentType.InputText, "text": text}]
# )
# )
# )
# await self.conn.send_request(ResponseCreate())
async def _flush(self) -> None:
try:
c = Cmd.create("flush")
await self.ten_env.send_cmd(c)
except Exception:
self.ten_env.log_error("Error flush")
async def _update_usage(self, usage: dict) -> None:
self.total_usage.completion_tokens += usage.get("output_tokens") or 0
self.total_usage.prompt_tokens += usage.get("input_tokens") or 0
self.total_usage.total_tokens += usage.get("total_tokens") or 0
if not self.total_usage.completion_tokens_details:
self.total_usage.completion_tokens_details = LLMCompletionTokensDetails()
if not self.total_usage.prompt_tokens_details:
self.total_usage.prompt_tokens_details = LLMPromptTokensDetails()
if usage.get("output_token_details"):
self.total_usage.completion_tokens_details.accepted_prediction_tokens += (
usage["output_token_details"].get("text_tokens")
)
self.total_usage.completion_tokens_details.audio_tokens += usage[
"output_token_details"
].get("audio_tokens")
if usage.get("input_token_details:"):
self.total_usage.prompt_tokens_details.audio_tokens += usage[
"input_token_details"
].get("audio_tokens")
self.total_usage.prompt_tokens_details.cached_tokens += usage[
"input_token_details"
].get("cached_tokens")
self.total_usage.prompt_tokens_details.text_tokens += usage[
"input_token_details"
].get("text_tokens")
self.ten_env.log_info(f"total usage: {self.total_usage}")
data = Data.create("llm_stat")
data.set_property_from_json("usage", json.dumps(self.total_usage.model_dump()))
if self.connect_times and self.completion_times and self.first_token_times:
data.set_property_from_json(
"latency",
json.dumps(
{
"connection_latency_95": np.percentile(self.connect_times, 95),
"completion_latency_95": np.percentile(
self.completion_times, 95
),
"first_token_latency_95": np.percentile(
self.first_token_times, 95
),
"connection_latency_99": np.percentile(self.connect_times, 99),
"completion_latency_99": np.percentile(
self.completion_times, 99
),
"first_token_latency_99": np.percentile(
self.first_token_times, 99
),
}
),
)
asyncio.create_task(self.ten_env.send_data(data))
async def on_call_chat_completion(self, async_ten_env, **kargs):
raise NotImplementedError
async def on_data_chat_completion(self, async_ten_env, **kargs):
raise NotImplementedError
|