File size: 35,381 Bytes
87337b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
#
#
# Agora Real Time Engagement
# Created by Wei Hu in 2024-08.
# Copyright (c) 2024 Agora IO. All rights reserved.
#
#
import asyncio
import base64
import io
import json
from enum import Enum
import traceback
import time
import numpy as np
from datetime import datetime
from typing import Iterable
from pydub import AudioSegment

from ten import (
    AudioFrame,
    AsyncTenEnv,
    Cmd,
    StatusCode,
    CmdResult,
    Data,
)
from ten.audio_frame import AudioFrameDataFmt
from ten_ai_base.const import CMD_PROPERTY_RESULT, CMD_TOOL_CALL
from dataclasses import dataclass
from ten_ai_base.config import BaseConfig
from ten_ai_base.chat_memory import (
    ChatMemory,
    EVENT_MEMORY_EXPIRED,
    EVENT_MEMORY_APPENDED,
)
from ten_ai_base.usage import (
    LLMUsage,
    LLMCompletionTokensDetails,
    LLMPromptTokensDetails,
)
from ten_ai_base.types import (
    LLMToolMetadata,
    LLMToolResult,
    LLMChatCompletionContentPartParam,
)
from ten_ai_base.llm import AsyncLLMBaseExtension
from .realtime.connection import RealtimeApiConnection
from .realtime.struct import (
    AudioFormats,
    ItemCreate,
    SessionCreated,
    ItemCreated,
    UserMessageItemParam,
    AssistantMessageItemParam,
    ItemInputAudioTranscriptionCompleted,
    ItemInputAudioTranscriptionFailed,
    ResponseCreated,
    ResponseDone,
    ResponseAudioTranscriptDelta,
    ResponseTextDelta,
    ResponseAudioTranscriptDone,
    ResponseTextDone,
    ResponseOutputItemDone,
    ResponseOutputItemAdded,
    ResponseAudioDelta,
    ResponseAudioDone,
    InputAudioBufferSpeechStarted,
    InputAudioBufferSpeechStopped,
    ResponseFunctionCallArgumentsDone,
    ErrorMessage,
    ItemDelete,
    SessionUpdate,
    SessionUpdateParams,
    InputAudioTranscription,
    ContentType,
    FunctionCallOutputItemParam,
    ResponseCreate,
)

CMD_IN_FLUSH = "flush"
CMD_IN_ON_USER_JOINED = "on_user_joined"
CMD_IN_ON_USER_LEFT = "on_user_left"
CMD_OUT_FLUSH = "flush"


class Role(str, Enum):
    User = "user"
    Assistant = "assistant"


@dataclass
class GLMRealtimeConfig(BaseConfig):
    base_uri: str = "wss://open.bigmodel.cn"
    api_key: str = ""
    path: str = "/api/paas/v4/realtime"
    prompt: str = ""
    temperature: float = 0.5
    max_tokens: int = 1024
    server_vad: bool = True
    audio_out: bool = True
    input_transcript: bool = True
    sample_rate: int = 24000

    stream_id: int = 0
    dump: bool = False
    max_history: int = 20
    enable_storage: bool = False
    greeting: str = ""
    language: str = "en-US"

    def build_ctx(self) -> dict:
        return {
        }


class GLMRealtimeExtension(AsyncLLMBaseExtension):

    def __init__(self, name: str):
        super().__init__(name)
        self.ten_env: AsyncTenEnv = None
        self.conn = None
        self.session = None
        self.session_id = None

        self.config: GLMRealtimeConfig = None
        self.stopped: bool = False
        self.connected: bool = False
        self.buffer: bytearray = b""
        self.memory: ChatMemory = None
        self.total_usage: LLMUsage = LLMUsage()
        self.users_count = 0

        self.stream_id: int = 0
        self.remote_stream_id: int = 0
        self.channel_name: str = ""
        self.audio_len_threshold: int = 5120

        self.completion_times = []
        self.connect_times = []
        self.first_token_times = []

        self.transcript: str = ""
        self.ctx: dict = {}
        self.input_end = time.time()
        self.input_audio_queue = asyncio.Queue()

    async def on_init(self, ten_env: AsyncTenEnv) -> None:
        await super().on_init(ten_env)
        ten_env.log_debug("on_init")

    async def on_start(self, ten_env: AsyncTenEnv) -> None:
        await super().on_start(ten_env)
        ten_env.log_debug("on_start")
        self.ten_env = ten_env

        self.loop = asyncio.get_event_loop()
        self.loop.create_task(self._on_process_audio())

        self.config = await GLMRealtimeConfig.create_async(ten_env=ten_env)
        ten_env.log_info(f"config: {self.config}")

        if not self.config.api_key:
            ten_env.log_error("api_key is required")
            return

        try:
            self.memory = ChatMemory(self.config.max_history)

            if self.config.enable_storage:
                [result, _] = await ten_env.send_cmd(Cmd.create("retrieve"))
                if result.get_status_code() == StatusCode.OK:
                    try:
                        history = json.loads(result.get_property_string("response"))
                        for i in history:
                            self.memory.put(i)
                        ten_env.log_info(f"on retrieve context {history}")
                    except Exception as e:
                        ten_env.log_error(f"Failed to handle retrieve result {e}")
                else:
                    ten_env.log_warn("Failed to retrieve content")

            self.memory.on(EVENT_MEMORY_EXPIRED, self._on_memory_expired)
            self.memory.on(EVENT_MEMORY_APPENDED, self._on_memory_appended)

            self.ctx = self.config.build_ctx()

            self.conn = RealtimeApiConnection(
                ten_env=ten_env,
                base_uri=self.config.base_uri,
                path=self.config.path,
                api_key=self.config.api_key,
            )
            ten_env.log_info("Finish init client")

            self.loop.create_task(self._loop())
        except Exception as e:
            traceback.print_exc()
            self.ten_env.log_error(f"Failed to init client {e}")

    async def on_stop(self, ten_env: AsyncTenEnv) -> None:
        await super().on_stop(ten_env)
        ten_env.log_info("on_stop")

        self.input_audio_queue.put_nowait(None)
        self.stopped = True

    async def on_audio_frame(self, _: AsyncTenEnv, audio_frame: AudioFrame) -> None:
        try:
            stream_id = audio_frame.get_property_int("stream_id")
            if self.channel_name == "":
                self.channel_name = audio_frame.get_property_string("channel")

            if self.remote_stream_id == 0:
                self.remote_stream_id = stream_id

            frame_buf = audio_frame.get_buf()
            self.input_audio_queue.put_nowait(frame_buf)

            if not self.config.server_vad:
                self.input_end = time.time()
        except Exception as e:
            traceback.print_exc()
            self.ten_env.log_error(f"GLMV2VExtension on audio frame failed {e}")

    async def on_cmd(self, ten_env: AsyncTenEnv, cmd: Cmd) -> None:
        cmd_name = cmd.get_name()
        ten_env.log_debug("on_cmd name {}".format(cmd_name))

        status = StatusCode.OK
        detail = "success"

        if cmd_name == CMD_IN_FLUSH:
            # Will only flush if it is client side vad
            await self._flush()
            await ten_env.send_cmd(Cmd.create(CMD_OUT_FLUSH))
            ten_env.log_info("on flush")
        elif cmd_name == CMD_IN_ON_USER_JOINED:
            self.users_count += 1
            # Send greeting when first user joined
            if self.users_count == 1:
                await self._greeting()
        elif cmd_name == CMD_IN_ON_USER_LEFT:
            self.users_count -= 1
        else:
            # Register tool
            await super().on_cmd(ten_env, cmd)
            return

        cmd_result = CmdResult.create(status)
        cmd_result.set_property_string("detail", detail)
        await ten_env.return_result(cmd_result, cmd)

    # Not support for now
    async def on_data(self, ten_env: AsyncTenEnv, data: Data) -> None:
        pass

    async def _on_process_audio(self) -> None:
        while True:
            try:
                audio_frame = await self.input_audio_queue.get()

                if audio_frame is None:
                    break

                self._dump_audio_if_need(audio_frame, Role.User)
                if self.connected:
                    wav_buff = self.convert_to_wav_in_memory(audio_frame)
                    await self.conn.send_audio_data(wav_buff)
            except Exception as e:
                traceback.print_exc()
                self.ten_env.log_error(f"Error processing audio frame {e}")

    async def _loop(self):
        def get_time_ms() -> int:
            current_time = datetime.now()
            return current_time.microsecond // 1000

        try:
            start_time = time.time()
            await self.conn.connect()
            self.connect_times.append(time.time() - start_time)
            item_id = ""  # For truncate
            response_id = ""
            # content_index = 0
            relative_start_ms = get_time_ms()
            flushed = set()

            self.ten_env.log_info("Client loop started")
            async for message in self.conn.listen():
                try:
                    # self.ten_env.log_info(f"Received message: {message.type}")
                    match message:
                        case SessionCreated():
                            self.ten_env.log_info(
                                f"Session is created: {message.session}"
                            )
                            self.session_id = message.session.id
                            self.session = message.session
                            await self._update_session()

                            history = self.memory.get()
                            for h in history:
                                if h["role"] == "user":
                                    await self.conn.send_request(
                                        ItemCreate(
                                            item=UserMessageItemParam(
                                                content=[
                                                    {
                                                        "type": ContentType.InputText,
                                                        "text": h["content"],
                                                    }
                                                ]
                                            )
                                        )
                                    )
                                elif h["role"] == "assistant":
                                    await self.conn.send_request(
                                        ItemCreate(
                                            item=AssistantMessageItemParam(
                                                content=[
                                                    {
                                                        "type": ContentType.InputText,
                                                        "text": h["content"],
                                                    }
                                                ]
                                            )
                                        )
                                    )
                            self.ten_env.log_info(f"Finish send history {history}")
                            self.memory.clear()

                            if not self.connected:
                                self.connected = True
                                await self._greeting()
                        case ItemInputAudioTranscriptionCompleted():
                            self.ten_env.log_info(
                                f"On request transcript {message.transcript}"
                            )
                            self._send_transcript(message.transcript, Role.User, True)
                            self.memory.put(
                                {
                                    "role": "user",
                                    "content": message.transcript,
                                    # "id": message.item_id,
                                }
                            )
                        case ItemInputAudioTranscriptionFailed():
                            self.ten_env.log_warn(
                                f"On request transcript failed {message.item_id} {message.error}"
                            )
                        case ItemCreated():
                            self.ten_env.log_info(f"On item created {message.item}")
                        case ResponseCreated():
                            response_id = message.response.id
                            self.ten_env.log_info(f"On response created {response_id}")
                        case ResponseDone():
                            msg_resp_id = message.response.id
                            status = message.response.status
                            if msg_resp_id == response_id:
                                response_id = ""
                            self.ten_env.log_info(
                                f"On response done {msg_resp_id} {status} {message.response.usage}"
                            )

                            # workaround as GLM does not have responseAudioTranscriptDone
                            self.transcript = ""
                            self._send_transcript("", Role.Assistant, True)

                            if message.response.usage:
                                pass
                                # await self._update_usage(message.response.usage)
                        case ResponseAudioTranscriptDelta():
                            self.ten_env.log_info(
                                f"On response transcript delta {message.output_index} {message.content_index} {message.delta}"
                            )
                            if message.response_id in flushed:
                                self.ten_env.log_warn(
                                    f"On flushed transcript delta {message.output_index} {message.content_index} {message.delta}"
                                )
                                continue
                            self._send_transcript(message.delta, Role.Assistant, False)
                        case ResponseTextDelta():
                            self.ten_env.log_info(
                                f"On response text delta {message.output_index} {message.content_index} {message.delta}"
                            )
                            # if message.response_id in flushed:
                            #     self.ten_env.log_warn(
                            #         f"On flushed text delta {message.output_index} {message.content_index} {message.delta}"
                            #     )
                            #     continue
                            # if item_id != message.item_id:
                            #     item_id = message.item_id
                            #     self.first_token_times.append(
                            #         time.time() - self.input_end
                            #     )
                            self._send_transcript(message.delta, Role.Assistant, False)
                        case ResponseAudioTranscriptDone():
                            # this is not triggering by GLM
                            self.ten_env.log_info(
                                f"On response transcript done {message.output_index} {message.content_index} {message.transcript}"
                            )
                            if message.response_id in flushed:
                                self.ten_env.log_warn(
                                    "On flushed transcript done"
                                )
                                continue
                            self.memory.put(
                                {
                                    "role": "assistant",
                                    "content": message.transcript,
                                    # "id": message.item_id,
                                }
                            )
                            self.transcript = ""
                            self._send_transcript("", Role.Assistant, True)
                        case ResponseTextDone():
                            self.ten_env.log_info(
                                f"On response text done {message.output_index} {message.content_index} {message.text}"
                            )
                            # if message.response_id in flushed:
                            #     self.ten_env.log_warn(
                            #         f"On flushed text done {message.response_id}"
                            #     )
                            #     continue
                            self.completion_times.append(time.time() - self.input_end)
                            self.transcript = ""
                            self._send_transcript("", Role.Assistant, True)
                        case ResponseOutputItemDone():
                            self.ten_env.log_info(f"Output item done {message.item}")
                        case ResponseOutputItemAdded():
                            self.ten_env.log_info(
                                f"Output item added {message.output_index} {message.item}"
                            )
                        case ResponseAudioDelta():
                            # if message.response_id in flushed:
                            #     self.ten_env.log_warn(
                            #         f"On flushed audio delta {message.response_id} {message.item_id} {message.content_index}"
                            #     )
                            #     continue
                            # if item_id != message.item_id:
                            #     item_id = message.item_id
                            #     self.first_token_times.append(
                            #         time.time() - self.input_end
                            #     )
                            # content_index = message.content_index
                            await self._on_audio_delta(message.delta)
                        case ResponseAudioDone():
                            self.completion_times.append(time.time() - self.input_end)
                        case InputAudioBufferSpeechStarted():
                            self.ten_env.log_info(
                                f"On server listening, in response {response_id}, last item {item_id}"
                            )
                            # Tuncate the on-going audio stream
                            # end_ms = get_time_ms() - relative_start_ms
                            # if item_id:
                            #     truncate = ItemTruncate(
                            #         item_id=item_id,
                            #         content_index=content_index,
                            #         audio_end_ms=end_ms,
                            #     )
                            #     await self.conn.send_request(truncate)
                            if self.config.server_vad:
                                await self._flush()
                            if response_id and self.transcript:
                                transcript = self.transcript + "[interrupted]"
                                self._send_transcript(transcript, Role.Assistant, True)
                                self.transcript = ""
                                # memory leak, change to lru later
                                flushed.add(response_id)
                            item_id = ""
                        case InputAudioBufferSpeechStopped():
                            # Only for server vad
                            self.input_end = time.time()
                            relative_start_ms = get_time_ms() - message.audio_end_ms
                            self.ten_env.log_info(
                                f"On server stop listening, {message.audio_end_ms}, relative {relative_start_ms}"
                            )
                        case ResponseFunctionCallArgumentsDone():
                            # tool_call_id = message.call_id
                            name = message.name
                            arguments = message.arguments
                            self.ten_env.log_info(f"need to call func {name}")
                            self.loop.create_task(
                                self._handle_tool_call(name, arguments)
                            )
                        case ErrorMessage():
                            self.ten_env.log_error(
                                f"Error message received: {message.error}"
                            )
                        case _:
                            self.ten_env.log_debug(f"Not handled message {message}")
                except Exception as e:
                    traceback.print_exc()
                    self.ten_env.log_error(f"Error processing message: {message} {e}")

            self.ten_env.log_info("Client loop finished")
        except Exception as e:
            traceback.print_exc()
            self.ten_env.log_error(f"Failed to handle loop {e}")

        # clear so that new session can be triggered
        self.connected = False
        self.remote_stream_id = 0

        if not self.stopped:
            await self.conn.close()
            await asyncio.sleep(0.5)
            self.ten_env.log_info("Reconnect")

            self.conn = RealtimeApiConnection(
                ten_env=self.ten_env,
                base_uri=self.config.base_uri,
                path=self.config.path,
                api_key=self.config.api_key,
            )

            self.loop.create_task(self._loop())

    async def _on_memory_expired(self, message: dict) -> None:
        self.ten_env.log_info(f"Memory expired: {message}")
        item_id = message.get("item_id")
        if item_id:
            await self.conn.send_request(ItemDelete(item_id=item_id))

    async def _on_memory_appended(self, message: dict) -> None:
        self.ten_env.log_info(f"Memory appended: {message}")
        if not self.config.enable_storage:
            return

        role = message.get("role")
        stream_id = self.remote_stream_id if role == Role.User else 0
        try:
            d = Data.create("append")
            d.set_property_string("text", message.get("content"))
            d.set_property_string("role", role)
            d.set_property_int("stream_id", stream_id)
            asyncio.create_task(self.ten_env.send_data(d))
        except Exception as e:
            self.ten_env.log_error(f"Error send append_context data {message} {e}")

    # Direction: IN
    def convert_to_wav_in_memory(self, buff: bytearray) -> bytes:
        """
        Converts the accumulated PCM data to WAV format in-memory.
        Returns the WAV data as bytes.
        """
        # Convert PCM data to numpy array of int16 type
        pcm_data = np.frombuffer(buff, dtype=np.int16)

        # Use pydub to create an AudioSegment
        audio_segment = AudioSegment(
            pcm_data.tobytes(), 
            frame_rate=24000,
            sample_width=2, 
            channels=1
        )

        # Create an in-memory stream to store the WAV file
        memory_stream = io.BytesIO()

        # Export the AudioSegment to the in-memory stream as WAV
        audio_segment.export(memory_stream, format="wav")
        
        # Return the WAV data as bytes
        wav_bytes = memory_stream.getvalue()
        return wav_bytes

    async def _update_session(self) -> None:
        tools = []

        def tool_dict(tool: LLMToolMetadata):
            t = {
                "type": "function",
                "name": tool.name,
                "description": tool.description,
                "parameters": {
                    "type": "object",
                    "properties": {},
                    "required": [],
                    "additionalProperties": False,
                },
            }

            for param in tool.parameters:
                t["parameters"]["properties"][param.name] = {
                    "type": param.type,
                    "description": param.description,
                }
                if param.required:
                    t["parameters"]["required"].append(param.name)

            return t

        if self.available_tools:
            tool_prompt = "You have several tools that you can get help from:\n"
            for t in self.available_tools:
                tool_prompt += f"- ***{t.name}***: {t.description}"
            self.ctx["tools"] = tool_prompt
            tools = [tool_dict(t) for t in self.available_tools]
        prompt = self._replace(self.config.prompt)

        self.ten_env.log_info(f"update session {prompt} {tools}")
        su = SessionUpdate(
            session=SessionUpdateParams(
                instructions=prompt,
                input_audio_format=AudioFormats.WAV24,
                output_audio_format=AudioFormats.PCM,
                tools=tools,
            )
        )
        if self.config.audio_out:
            # su.session.voice = self.config.voice
            pass
        else:
            su.session.modalities = ["text"]

        if self.config.input_transcript:
            su.session.input_audio_transcription = InputAudioTranscription(
                model="whisper-1"
            )
        await self.conn.send_request(su)

    async def on_tools_update(self, _: AsyncTenEnv, tool: LLMToolMetadata) -> None:
        """Called when a new tool is registered. Implement this method to process the new tool."""
        self.ten_env.log_info(f"on tools update {tool}")
        # await self._update_session()

    def _replace(self, prompt: str) -> str:
        result = prompt
        for token, value in self.ctx.items():
            result = result.replace("{" + token + "}", value)
        return result

    # Direction: OUT
    async def _on_audio_delta(self, delta: bytes) -> None:
        audio_data = base64.b64decode(delta)
        self.ten_env.log_debug(
            f"on_audio_delta audio_data len {len(audio_data)} samples {len(audio_data) // 2}"
        )
        self._dump_audio_if_need(audio_data, Role.Assistant)

        f = AudioFrame.create("pcm_frame")
        f.set_sample_rate(self.config.sample_rate)
        f.set_bytes_per_sample(2)
        f.set_number_of_channels(1)
        f.set_data_fmt(AudioFrameDataFmt.INTERLEAVE)
        f.set_samples_per_channel(len(audio_data) // 2)
        f.alloc_buf(len(audio_data))
        buff = f.lock_buf()
        buff[:] = audio_data
        f.unlock_buf(buff)
        await self.ten_env.send_audio_frame(f)

    def _send_transcript(self, content: str, role: Role, is_final: bool) -> None:
        def is_punctuation(char):
            if char in [",", ",", ".", "。", "?", "?", "!", "!"]:
                return True
            return False

        def parse_sentences(sentence_fragment, content):
            sentences = []
            current_sentence = sentence_fragment
            for char in content:
                current_sentence += char
                if is_punctuation(char):
                    # Check if the current sentence contains non-punctuation characters
                    stripped_sentence = current_sentence
                    if any(c.isalnum() for c in stripped_sentence):
                        sentences.append(stripped_sentence)
                    current_sentence = ""  # Reset for the next sentence

            remain = current_sentence  # Any remaining characters form the incomplete sentence
            return sentences, remain

        def send_data(
            ten_env: AsyncTenEnv,
            sentence: str,
            stream_id: int,
            role: str,
            is_final: bool,
        ):
            try:
                d = Data.create("text_data")
                d.set_property_string("text", sentence)
                d.set_property_bool("end_of_segment", is_final)
                d.set_property_string("role", role)
                d.set_property_int("stream_id", stream_id)
                ten_env.log_info(
                    f"send transcript text [{sentence}] stream_id {stream_id} is_final {is_final} end_of_segment {is_final} role {role}"
                )
                asyncio.create_task(ten_env.send_data(d))
            except Exception as e:
                ten_env.log_error(
                    f"Error send text data {role}: {sentence} {is_final} {e}"
                )

        stream_id = self.remote_stream_id if role == Role.User else 0
        try:
            if role == Role.Assistant and not is_final:
                sentences, self.transcript = parse_sentences(self.transcript, content)
                for s in sentences:
                    send_data(self.ten_env, s, stream_id, role, is_final)
            else:
                send_data(self.ten_env, content, stream_id, role, is_final)
        except Exception as e:
            self.ten_env.log_error(
                f"Error send text data {role}: {content} {is_final} {e}"
            )

    def _dump_audio_if_need(self, buf: bytearray, role: Role) -> None:
        if not self.config.dump:
            return

        with open("{}_{}.pcm".format(role, self.channel_name), "ab") as dump_file:
            dump_file.write(buf)

    async def _handle_tool_call(
        self, name: str, arguments: str
    ) -> None:
        self.ten_env.log_info(f"_handle_tool_call {name} {arguments}")
        cmd: Cmd = Cmd.create(CMD_TOOL_CALL)
        cmd.set_property_string("name", name)
        cmd.set_property_from_json("arguments", arguments)
        [result, _] = await self.ten_env.send_cmd(cmd)

        tool_response = ItemCreate(
            item=FunctionCallOutputItemParam(
                output='{"success":false}',
            )
        )
        if result.get_status_code() == StatusCode.OK:
            tool_result: LLMToolResult = json.loads(
                result.get_property_to_json(CMD_PROPERTY_RESULT)
            )

            result_content = tool_result["content"]
            tool_response.item.output = json.dumps(
                self._convert_to_content_parts(result_content)
            )
            self.ten_env.log_info(f"tool_result: {tool_result}")
        else:
            self.ten_env.log_error("Tool call failed")

        await self.conn.send_request(tool_response)
        await self.conn.send_request(ResponseCreate())
        self.ten_env.log_info(f"_remote_tool_call finish {name} {arguments}")

    def _greeting_text(self) -> str:
        text = "Hi, there."
        if self.config.language == "zh-CN":
            text = "你好。"
        elif self.config.language == "ja-JP":
            text = "こんにちは"
        elif self.config.language == "ko-KR":
            text = "안녕하세요"
        return text

    def _convert_tool_params_to_dict(self, tool: LLMToolMetadata):
        json_dict = {"type": "object", "properties": {}, "required": []}

        for param in tool.parameters:
            json_dict["properties"][param.name] = {
                "type": param.type,
                "description": param.description,
            }
            if param.required:
                json_dict["required"].append(param.name)

        return json_dict

    def _convert_to_content_parts(
        self, content: Iterable[LLMChatCompletionContentPartParam]
    ):
        content_parts = []

        if isinstance(content, str):
            content_parts.append({"type": "text", "text": content})
        else:
            for part in content:
                # Only text content is supported currently for v2v model
                if part["type"] == "text":
                    content_parts.append(part)
        return content_parts

    async def _greeting(self) -> None:
        if self.connected and self.users_count == 1:
            # somehow it's not working
            text = self._greeting_text()
            if self.config.greeting:
                text = "Say '" + self.config.greeting + "' to me."
            self.ten_env.log_info(f"send greeting {text}")
            # await self.conn.send_request(
            #     ItemCreate(
            #         item=UserMessageItemParam(
            #             content=[{"type": ContentType.InputText, "text": text}]
            #         )
            #     )
            # )
            # await self.conn.send_request(ResponseCreate())

    async def _flush(self) -> None:
        try:
            c = Cmd.create("flush")
            await self.ten_env.send_cmd(c)
        except Exception:
            self.ten_env.log_error("Error flush")

    async def _update_usage(self, usage: dict) -> None:
        self.total_usage.completion_tokens += usage.get("output_tokens") or 0
        self.total_usage.prompt_tokens += usage.get("input_tokens") or 0
        self.total_usage.total_tokens += usage.get("total_tokens") or 0
        if not self.total_usage.completion_tokens_details:
            self.total_usage.completion_tokens_details = LLMCompletionTokensDetails()
        if not self.total_usage.prompt_tokens_details:
            self.total_usage.prompt_tokens_details = LLMPromptTokensDetails()

        if usage.get("output_token_details"):
            self.total_usage.completion_tokens_details.accepted_prediction_tokens += (
                usage["output_token_details"].get("text_tokens")
            )
            self.total_usage.completion_tokens_details.audio_tokens += usage[
                "output_token_details"
            ].get("audio_tokens")

        if usage.get("input_token_details:"):
            self.total_usage.prompt_tokens_details.audio_tokens += usage[
                "input_token_details"
            ].get("audio_tokens")
            self.total_usage.prompt_tokens_details.cached_tokens += usage[
                "input_token_details"
            ].get("cached_tokens")
            self.total_usage.prompt_tokens_details.text_tokens += usage[
                "input_token_details"
            ].get("text_tokens")

        self.ten_env.log_info(f"total usage: {self.total_usage}")

        data = Data.create("llm_stat")
        data.set_property_from_json("usage", json.dumps(self.total_usage.model_dump()))
        if self.connect_times and self.completion_times and self.first_token_times:
            data.set_property_from_json(
                "latency",
                json.dumps(
                    {
                        "connection_latency_95": np.percentile(self.connect_times, 95),
                        "completion_latency_95": np.percentile(
                            self.completion_times, 95
                        ),
                        "first_token_latency_95": np.percentile(
                            self.first_token_times, 95
                        ),
                        "connection_latency_99": np.percentile(self.connect_times, 99),
                        "completion_latency_99": np.percentile(
                            self.completion_times, 99
                        ),
                        "first_token_latency_99": np.percentile(
                            self.first_token_times, 99
                        ),
                    }
                ),
            )
        asyncio.create_task(self.ten_env.send_data(data))

    async def on_call_chat_completion(self, async_ten_env, **kargs):
        raise NotImplementedError

    async def on_data_chat_completion(self, async_ten_env, **kargs):
        raise NotImplementedError