File size: 14,000 Bytes
87337b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
#
# This file is part of TEN Framework, an open source project.
# Licensed under the Apache License, Version 2.0.
# See the LICENSE file for more information.
#
import asyncio
import traceback
import aiohttp
import json
import copy
from typing import List, Any, AsyncGenerator
from dataclasses import dataclass
from cozepy import ChatEventType, Message, TokenAuth, AsyncCoze, ChatEvent, Chat
from ten import (
AudioFrame,
VideoFrame,
AsyncTenEnv,
Cmd,
StatusCode,
CmdResult,
Data,
)
from ten_ai_base.config import BaseConfig
from ten_ai_base.chat_memory import ChatMemory
from ten_ai_base.types import (
LLMChatCompletionUserMessageParam,
LLMCallCompletionArgs,
LLMDataCompletionArgs,
LLMToolMetadata,
)
from ten_ai_base.llm import (
AsyncLLMBaseExtension,
)
CMD_IN_FLUSH = "flush"
CMD_IN_ON_USER_JOINED = "on_user_joined"
CMD_IN_ON_USER_LEFT = "on_user_left"
CMD_OUT_FLUSH = "flush"
CMD_OUT_TOOL_CALL = "tool_call"
DATA_IN_TEXT_DATA_PROPERTY_IS_FINAL = "is_final"
DATA_IN_TEXT_DATA_PROPERTY_TEXT = "text"
DATA_OUT_TEXT_DATA_PROPERTY_TEXT = "text"
DATA_OUT_TEXT_DATA_PROPERTY_END_OF_SEGMENT = "end_of_segment"
CMD_PROPERTY_RESULT = "tool_result"
def is_punctuation(char):
if char in [",", ",", ".", "。", "?", "?", "!", "!"]:
return True
return False
def parse_sentences(sentence_fragment, content):
sentences = []
current_sentence = sentence_fragment
for char in content:
current_sentence += char
if is_punctuation(char):
stripped_sentence = current_sentence
if any(c.isalnum() for c in stripped_sentence):
sentences.append(stripped_sentence)
current_sentence = ""
remain = current_sentence
return sentences, remain
@dataclass
class CozeConfig(BaseConfig):
base_url: str = "https://api.acoze.com"
bot_id: str = ""
token: str = ""
user_id: str = "TenAgent"
greeting: str = ""
max_history: int = 32
class AsyncCozeExtension(AsyncLLMBaseExtension):
config: CozeConfig = None
sentence_fragment: str = ""
ten_env: AsyncTenEnv = None
loop: asyncio.AbstractEventLoop = None
stopped: bool = False
users_count = 0
memory: ChatMemory = None
acoze: AsyncCoze = None
# conversation: str = ""
async def on_init(self, ten_env: AsyncTenEnv) -> None:
await super().on_init(ten_env)
ten_env.log_debug("on_init")
async def on_start(self, ten_env: AsyncTenEnv) -> None:
await super().on_start(ten_env)
ten_env.log_debug("on_start")
self.loop = asyncio.get_event_loop()
self.config = await CozeConfig.create_async(ten_env=ten_env)
ten_env.log_info(f"config: {self.config}")
if not self.config.bot_id or not self.config.token:
ten_env.log_error("Missing required configuration")
return
self.memory = ChatMemory(self.config.max_history)
try:
self.acoze = AsyncCoze(
auth=TokenAuth(token=self.config.token), base_url=self.config.base_url
)
# self.conversation = await self.acoze.conversations.create(messages = [
# Message.build_user_question_text(self.config.prompt)
# ] if self.config.prompt else [])
except Exception as e:
ten_env.log_error(f"Failed to create conversation {e}")
self.ten_env = ten_env
async def on_stop(self, ten_env: AsyncTenEnv) -> None:
await super().on_stop(ten_env)
ten_env.log_debug("on_stop")
self.stopped = True
async def on_deinit(self, ten_env: AsyncTenEnv) -> None:
await super().on_deinit(ten_env)
ten_env.log_debug("on_deinit")
async def on_cmd(self, ten_env: AsyncTenEnv, cmd: Cmd) -> None:
cmd_name = cmd.get_name()
ten_env.log_debug("on_cmd name {}".format(cmd_name))
status = StatusCode.OK
detail = "success"
if cmd_name == CMD_IN_FLUSH:
await self.flush_input_items(ten_env)
await ten_env.send_cmd(Cmd.create(CMD_OUT_FLUSH))
ten_env.log_info("on flush")
elif cmd_name == CMD_IN_ON_USER_JOINED:
self.users_count += 1
# Send greeting when first user joined
if self.config.greeting and self.users_count == 1:
self.send_text_output(ten_env, self.config.greeting, True)
elif cmd_name == CMD_IN_ON_USER_LEFT:
self.users_count -= 1
else:
await super().on_cmd(ten_env, cmd)
return
cmd_result = CmdResult.create(status)
cmd_result.set_property_string("detail", detail)
await ten_env.return_result(cmd_result, cmd)
async def on_call_chat_completion(
self, ten_env: AsyncTenEnv, **kargs: LLMCallCompletionArgs
) -> any:
raise RuntimeError("Not implemented")
async def on_data_chat_completion(
self, ten_env: AsyncTenEnv, **kargs: LLMDataCompletionArgs
) -> None:
if not self.acoze:
await self._send_text(
"Coze is not connected. Please check your configuration.", True
)
return
input_messages: LLMChatCompletionUserMessageParam = kargs.get("messages", [])
messages = copy.copy(self.memory.get())
if not input_messages:
ten_env.log_warn("No message in data")
else:
messages.extend(input_messages)
for i in input_messages:
self.memory.put(i)
total_output = ""
sentence_fragment = ""
calls = {}
sentences = []
self.ten_env.log_info(f"messages: {messages}")
response = self._stream_chat(messages=messages)
async for message in response:
self.ten_env.log_info(f"content: {message}")
try:
if message.event == ChatEventType.CONVERSATION_MESSAGE_DELTA:
total_output += message.message.content
sentences, sentence_fragment = parse_sentences(
sentence_fragment, message.message.content
)
for s in sentences:
await self._send_text(s, False)
elif message.event == ChatEventType.CONVERSATION_MESSAGE_COMPLETED:
if sentence_fragment:
await self._send_text(sentence_fragment, True)
else:
await self._send_text("", True)
elif message.event == ChatEventType.CONVERSATION_CHAT_FAILED:
last_error = message.chat.last_error
if last_error and last_error.code == 4011:
await self._send_text(
"The Coze token has been depleted. Please check your token usage.",
True,
)
else:
await self._send_text(last_error.msg, True)
except Exception as e:
self.ten_env.log_error(f"Failed to parse response: {message} {e}")
traceback.print_exc()
self.memory.put({"role": "assistant", "content": total_output})
self.ten_env.log_info(f"total_output: {total_output} {calls}")
async def on_tools_update(
self, ten_env: AsyncTenEnv, tool: LLMToolMetadata
) -> None:
# Implement the logic for tool updates
return await super().on_tools_update(ten_env, tool)
async def on_data(self, ten_env: AsyncTenEnv, data: Data) -> None:
data_name = data.get_name()
ten_env.log_info("on_data name {}".format(data_name))
is_final = False
input_text = ""
try:
is_final = data.get_property_bool(DATA_IN_TEXT_DATA_PROPERTY_IS_FINAL)
except Exception as err:
ten_env.log_info(
f"GetProperty optional {DATA_IN_TEXT_DATA_PROPERTY_IS_FINAL} failed, err: {err}"
)
try:
input_text = data.get_property_string(DATA_IN_TEXT_DATA_PROPERTY_TEXT)
except Exception as err:
ten_env.log_info(
f"GetProperty optional {DATA_IN_TEXT_DATA_PROPERTY_TEXT} failed, err: {err}"
)
if not is_final:
ten_env.log_info("ignore non-final input")
return
if not input_text:
ten_env.log_info("ignore empty text")
return
ten_env.log_info(f"OnData input text: [{input_text}]")
# Start an asynchronous task for handling chat completion
message = LLMChatCompletionUserMessageParam(role="user", content=input_text)
await self.queue_input_item(False, messages=[message])
async def on_audio_frame(
self, ten_env: AsyncTenEnv, audio_frame: AudioFrame
) -> None:
pass
async def on_video_frame(
self, ten_env: AsyncTenEnv, video_frame: VideoFrame
) -> None:
pass
async def _send_text(self, text: str, end_of_segment: bool) -> None:
data = Data.create("text_data")
data.set_property_string(DATA_OUT_TEXT_DATA_PROPERTY_TEXT, text)
data.set_property_bool(
DATA_OUT_TEXT_DATA_PROPERTY_END_OF_SEGMENT, end_of_segment
)
asyncio.create_task(self.ten_env.send_data(data))
async def _stream_chat(
self, messages: List[Any]
) -> AsyncGenerator[ChatEvent, None]:
additionals = []
for m in messages:
if m["role"] == "user":
additionals.append(
Message.build_user_question_text(m["content"]).model_dump()
)
elif m["role"] == "assistant":
additionals.append(
Message.build_assistant_answer(m["content"]).model_dump()
)
def chat_stream_handler(event: str, event_data: Any) -> ChatEvent:
if event == ChatEventType.DONE:
raise StopAsyncIteration
elif event == ChatEventType.ERROR:
raise RuntimeError(f"error event: {event_data}")
elif event in [
ChatEventType.CONVERSATION_MESSAGE_DELTA,
ChatEventType.CONVERSATION_MESSAGE_COMPLETED,
]:
return ChatEvent(
event=event, message=Message.model_validate_json(event_data)
)
elif event in [
ChatEventType.CONVERSATION_CHAT_CREATED,
ChatEventType.CONVERSATION_CHAT_IN_PROGRESS,
ChatEventType.CONVERSATION_CHAT_COMPLETED,
ChatEventType.CONVERSATION_CHAT_FAILED,
ChatEventType.CONVERSATION_CHAT_REQUIRES_ACTION,
]:
return ChatEvent(event=event, chat=Chat.model_validate_json(event_data))
else:
raise ValueError(f"invalid chat.event: {event}, {event_data}")
async with aiohttp.ClientSession() as session:
try:
url = f"{self.config.base_url}/v3/chat"
headers = {
"Authorization": f"Bearer {self.config.token}",
}
params = {
"bot_id": self.config.bot_id,
"user_id": self.config.user_id,
"additional_messages": additionals,
"stream": True,
"auto_save_history": True,
# "conversation_id": self.conversation.id
}
event = ""
async with session.post(url, json=params, headers=headers) as response:
async for line in response.content:
if line:
try:
self.ten_env.log_info(f"line: {line}")
decoded_line = line.decode("utf-8").strip()
if decoded_line:
if decoded_line.startswith("data:"):
data = decoded_line[5:].strip()
yield chat_stream_handler(
event=event, event_data=data.strip()
)
elif decoded_line.startswith("event:"):
event = decoded_line[6:]
self.ten_env.log_info(f"event: {event}")
if event == "done":
break
else:
result = json.loads(decoded_line)
code = result.get("code", 0)
if code == 4000:
await self._send_text(
"Coze bot is not published.", True
)
else:
self.ten_env.log_error(
f"Failed to stream chat: {result['code']}"
)
await self._send_text(
"Coze bot is not connected. Please check your configuration.",
True,
)
except Exception as e:
self.ten_env.log_error(f"Failed to stream chat: {e}")
except Exception as e:
traceback.print_exc()
self.ten_env.log_error(f"Failed to stream chat: {e}")
finally:
await session.close()
|