import gradio as gr from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM # Load the model and tokenizer using Hugging Face model_name = "microsoft/Phi-3-mini-4k-instruct" #model_name = "KingNish/Qwen2.5-0.5b-Test-ft" # Explicitly load the tokenizer and model tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True) # Create the pipeline #chatbot = pipeline("text-generation", model="KingNish/Qwen2.5-0.5b-Test-ft", trust_remote_code=True) chatbot = pipeline("text-generation", model=model, tokenizer=tokenizer, framework="pt") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # Combine system message and conversation history prompt=message #prompt = system_message + "\n" #prompt += f"User: {message}\n\nBot:" # Generate the response using the model response = chatbot(prompt, max_length=max_tokens, temperature=temperature, top_p=top_p)[0]['generated_text'] return response # Define the Gradio interface with additional inputs demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], ) if __name__ == "__main__": demo.launch()