Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -88,19 +88,24 @@ class RAGPipeline:
|
|
88 |
self.retriever = SentenceTransformerRetriever()
|
89 |
self.documents = []
|
90 |
self.device = torch.device("cpu")
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
94 |
|
95 |
except Exception as e:
|
96 |
logging.error(f"Error in RAGPipeline initialization: {str(e)}")
|
97 |
raise
|
98 |
|
99 |
-
@st.cache_resource
|
100 |
-
def
|
101 |
-
"""
|
102 |
try:
|
103 |
if not os.path.exists(_self.model_path):
|
|
|
104 |
st.info("Downloading model... This may take a while.")
|
105 |
direct_url = "https://huggingface.co/TheBloke/Mistral-7B-v0.1-GGUF/resolve/main/mistral-7b-v0.1.Q4_K_M.gguf"
|
106 |
_self.download_file_with_progress(direct_url, _self.model_path)
|
@@ -112,17 +117,19 @@ class RAGPipeline:
|
|
112 |
if os.path.getsize(_self.model_path) < 1000000: # Less than 1MB
|
113 |
os.remove(_self.model_path)
|
114 |
raise ValueError("Downloaded model file is too small, likely corrupted")
|
115 |
-
|
116 |
llm_config = {
|
|
|
117 |
"n_ctx": 2048,
|
118 |
"n_threads": 4,
|
119 |
"n_batch": 512,
|
120 |
"n_gpu_layers": 0,
|
121 |
"verbose": False
|
122 |
}
|
123 |
-
|
124 |
-
|
125 |
st.success("Model loaded successfully!")
|
|
|
126 |
|
127 |
except Exception as e:
|
128 |
st.error(f"Error initializing model: {str(e)}")
|
@@ -393,7 +400,7 @@ def initialize_rag_pipeline():
|
|
393 |
for directory in ['models', 'ESPN_data', 'embeddings_cache']:
|
394 |
os.makedirs(directory, exist_ok=True)
|
395 |
|
396 |
-
# Load embeddings from Drive
|
397 |
drive_file_id = "1MuV63AE9o6zR9aBvdSDQOUextp71r2NN"
|
398 |
with st.spinner("Loading embeddings from Google Drive..."):
|
399 |
cache_data = load_from_drive(drive_file_id)
|
@@ -401,26 +408,20 @@ def initialize_rag_pipeline():
|
|
401 |
st.error("Failed to load embeddings from Google Drive")
|
402 |
st.stop()
|
403 |
|
404 |
-
#
|
405 |
data_folder = "ESPN_data"
|
406 |
-
rag = RAGPipeline(data_folder)
|
407 |
|
408 |
# Store embeddings
|
409 |
rag.documents = cache_data['documents']
|
410 |
rag.retriever.store_embeddings(cache_data['embeddings'])
|
411 |
|
412 |
-
st.success("System initialized successfully!")
|
413 |
return rag
|
414 |
|
415 |
except Exception as e:
|
416 |
logging.error(f"Pipeline initialization error: {str(e)}")
|
417 |
st.error(f"Failed to initialize the system: {str(e)}")
|
418 |
raise
|
419 |
-
|
420 |
-
except Exception as e:
|
421 |
-
logging.error(f"Pipeline initialization error: {str(e)}")
|
422 |
-
st.error(f"Failed to initialize the system: {str(e)}")
|
423 |
-
raise
|
424 |
|
425 |
def main():
|
426 |
try:
|
|
|
88 |
self.retriever = SentenceTransformerRetriever()
|
89 |
self.documents = []
|
90 |
self.device = torch.device("cpu")
|
91 |
+
|
92 |
+
# Model path with absolute path
|
93 |
+
current_dir = os.path.dirname(os.path.abspath(__file__))
|
94 |
+
self.model_path = os.path.join(current_dir, "models", "mistral-7b-v0.1.Q4_K_M.gguf")
|
95 |
+
|
96 |
+
# Initialize model
|
97 |
+
self.llm = self.get_model()
|
98 |
|
99 |
except Exception as e:
|
100 |
logging.error(f"Error in RAGPipeline initialization: {str(e)}")
|
101 |
raise
|
102 |
|
103 |
+
@st.cache_resource(show_spinner=False)
|
104 |
+
def get_model(_self):
|
105 |
+
"""Get or initialize the model with caching"""
|
106 |
try:
|
107 |
if not os.path.exists(_self.model_path):
|
108 |
+
os.makedirs(os.path.dirname(_self.model_path), exist_ok=True)
|
109 |
st.info("Downloading model... This may take a while.")
|
110 |
direct_url = "https://huggingface.co/TheBloke/Mistral-7B-v0.1-GGUF/resolve/main/mistral-7b-v0.1.Q4_K_M.gguf"
|
111 |
_self.download_file_with_progress(direct_url, _self.model_path)
|
|
|
117 |
if os.path.getsize(_self.model_path) < 1000000: # Less than 1MB
|
118 |
os.remove(_self.model_path)
|
119 |
raise ValueError("Downloaded model file is too small, likely corrupted")
|
120 |
+
|
121 |
llm_config = {
|
122 |
+
"model_path": _self.model_path,
|
123 |
"n_ctx": 2048,
|
124 |
"n_threads": 4,
|
125 |
"n_batch": 512,
|
126 |
"n_gpu_layers": 0,
|
127 |
"verbose": False
|
128 |
}
|
129 |
+
|
130 |
+
model = Llama(**llm_config)
|
131 |
st.success("Model loaded successfully!")
|
132 |
+
return model
|
133 |
|
134 |
except Exception as e:
|
135 |
st.error(f"Error initializing model: {str(e)}")
|
|
|
400 |
for directory in ['models', 'ESPN_data', 'embeddings_cache']:
|
401 |
os.makedirs(directory, exist_ok=True)
|
402 |
|
403 |
+
# Load embeddings from Drive first
|
404 |
drive_file_id = "1MuV63AE9o6zR9aBvdSDQOUextp71r2NN"
|
405 |
with st.spinner("Loading embeddings from Google Drive..."):
|
406 |
cache_data = load_from_drive(drive_file_id)
|
|
|
408 |
st.error("Failed to load embeddings from Google Drive")
|
409 |
st.stop()
|
410 |
|
411 |
+
# Now initialize pipeline
|
412 |
data_folder = "ESPN_data"
|
413 |
+
rag = RAGPipeline(data_folder)
|
414 |
|
415 |
# Store embeddings
|
416 |
rag.documents = cache_data['documents']
|
417 |
rag.retriever.store_embeddings(cache_data['embeddings'])
|
418 |
|
|
|
419 |
return rag
|
420 |
|
421 |
except Exception as e:
|
422 |
logging.error(f"Pipeline initialization error: {str(e)}")
|
423 |
st.error(f"Failed to initialize the system: {str(e)}")
|
424 |
raise
|
|
|
|
|
|
|
|
|
|
|
425 |
|
426 |
def main():
|
427 |
try:
|