Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,581 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import warnings
|
3 |
+
warnings.filterwarnings("ignore", category=UserWarning)
|
4 |
+
|
5 |
+
import streamlit as st
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
import re
|
9 |
+
import requests
|
10 |
+
#from dotenv import load_dotenv
|
11 |
+
from embedding_processor import SentenceTransformerRetriever, process_data
|
12 |
+
import pickle
|
13 |
+
|
14 |
+
import os
|
15 |
+
import warnings
|
16 |
+
import json # Add this import
|
17 |
+
|
18 |
+
# Add at the top with other imports
|
19 |
+
from llama_cpp import Llama
|
20 |
+
import requests
|
21 |
+
from tqdm import tqdm
|
22 |
+
|
23 |
+
|
24 |
+
import logging
|
25 |
+
import sys
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
# Configure logging
|
30 |
+
logging.basicConfig(
|
31 |
+
level=logging.INFO,
|
32 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
33 |
+
handlers=[logging.StreamHandler(sys.stdout)]
|
34 |
+
)
|
35 |
+
|
36 |
+
# Create necessary directories at startup
|
37 |
+
for directory in ['models', 'ESPN_data', 'embeddings_cache']:
|
38 |
+
os.makedirs(directory, exist_ok=True)
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
# Load environment variables
|
43 |
+
#load_dotenv()
|
44 |
+
|
45 |
+
# Add the new function here, right after imports and before API configuration
|
46 |
+
|
47 |
+
@st.cache_data
|
48 |
+
def load_from_drive(file_id: str):
|
49 |
+
"""Load pickle file directly from Google Drive"""
|
50 |
+
try:
|
51 |
+
url = f"https://drive.google.com/uc?id={file_id}&export=download"
|
52 |
+
session = requests.Session()
|
53 |
+
response = session.get(url, stream=True)
|
54 |
+
|
55 |
+
for key, value in response.cookies.items():
|
56 |
+
if key.startswith('download_warning'):
|
57 |
+
url = f"{url}&confirm={value}"
|
58 |
+
response = session.get(url, stream=True)
|
59 |
+
break
|
60 |
+
|
61 |
+
content = response.content
|
62 |
+
print(f"Successfully downloaded {len(content)} bytes")
|
63 |
+
return pickle.loads(content)
|
64 |
+
|
65 |
+
except Exception as e:
|
66 |
+
print(f"Detailed error: {str(e)}")
|
67 |
+
st.error(f"Error loading file from Drive: {str(e)}")
|
68 |
+
return None
|
69 |
+
|
70 |
+
# Hugging Face API configuration
|
71 |
+
|
72 |
+
# API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-v0.1"
|
73 |
+
# headers = {"Authorization": f"Bearer HF_TOKEN"}
|
74 |
+
#model_name = 'mistralai/Mistral-7B-v0.1'
|
75 |
+
|
76 |
+
|
77 |
+
class RAGPipeline:
|
78 |
+
|
79 |
+
def __init__(self, data_folder: str, k: int = 5):
|
80 |
+
try:
|
81 |
+
self.data_folder = data_folder
|
82 |
+
self.k = k
|
83 |
+
self.retriever = SentenceTransformerRetriever()
|
84 |
+
self.documents = []
|
85 |
+
self.device = torch.device("cpu")
|
86 |
+
self.model_path = "mistral-7b-v0.1.Q4_K_M.gguf"
|
87 |
+
self.llm = None
|
88 |
+
self.initialize_model() # Using the class method
|
89 |
+
|
90 |
+
except Exception as e:
|
91 |
+
logging.error(f"Error in RAGPipeline initialization: {str(e)}")
|
92 |
+
raise
|
93 |
+
|
94 |
+
@st.cache_resource
|
95 |
+
def initialize_model(_self): # Changed 'self' to '_self' for Streamlit caching
|
96 |
+
"""Initialize the model with proper error handling and verification"""
|
97 |
+
try:
|
98 |
+
if not os.path.exists(_self.model_path):
|
99 |
+
st.info("Downloading model... This may take a while.")
|
100 |
+
direct_url = "https://huggingface.co/TheBloke/Mistral-7B-v0.1-GGUF/resolve/main/mistral-7b-v0.1.Q4_K_M.gguf"
|
101 |
+
_self.download_file_with_progress(direct_url, _self.model_path)
|
102 |
+
|
103 |
+
# Verify file exists and has content
|
104 |
+
if not os.path.exists(_self.model_path):
|
105 |
+
raise FileNotFoundError(f"Model file {_self.model_path} not found after download attempts")
|
106 |
+
|
107 |
+
if os.path.getsize(_self.model_path) < 1000000: # Less than 1MB
|
108 |
+
os.remove(_self.model_path)
|
109 |
+
raise ValueError("Downloaded model file is too small, likely corrupted")
|
110 |
+
|
111 |
+
llm_config = {
|
112 |
+
"n_ctx": 2048,
|
113 |
+
"n_threads": 4,
|
114 |
+
"n_batch": 512,
|
115 |
+
"n_gpu_layers": 0,
|
116 |
+
"verbose": False
|
117 |
+
}
|
118 |
+
|
119 |
+
_self.llm = Llama(model_path=_self.model_path, **llm_config)
|
120 |
+
st.success("Model loaded successfully!")
|
121 |
+
|
122 |
+
except Exception as e:
|
123 |
+
st.error(f"Error initializing model: {str(e)}")
|
124 |
+
raise
|
125 |
+
|
126 |
+
def download_file_with_progress(self, url: str, filename: str):
|
127 |
+
"""Download a file with progress bar using requests"""
|
128 |
+
response = requests.get(url, stream=True)
|
129 |
+
total_size = int(response.headers.get('content-length', 0))
|
130 |
+
|
131 |
+
with open(filename, 'wb') as file, tqdm(
|
132 |
+
desc=filename,
|
133 |
+
total=total_size,
|
134 |
+
unit='iB',
|
135 |
+
unit_scale=True,
|
136 |
+
unit_divisor=1024,
|
137 |
+
) as progress_bar:
|
138 |
+
for data in response.iter_content(chunk_size=1024):
|
139 |
+
size = file.write(data)
|
140 |
+
progress_bar.update(size)
|
141 |
+
|
142 |
+
# Alternative API call with streaming
|
143 |
+
def query_model(self, prompt: str) -> str:
|
144 |
+
"""Query the local Llama model instead of API"""
|
145 |
+
try:
|
146 |
+
if self.llm is None:
|
147 |
+
raise RuntimeError("Model not initialized")
|
148 |
+
|
149 |
+
# Generate response using Llama model
|
150 |
+
response = self.llm(
|
151 |
+
prompt,
|
152 |
+
max_tokens=512,
|
153 |
+
temperature=0.4,
|
154 |
+
top_p=0.95,
|
155 |
+
echo=False,
|
156 |
+
stop=["Question:", "\n\n"]
|
157 |
+
)
|
158 |
+
|
159 |
+
# Check and extract response
|
160 |
+
if response and 'choices' in response and len(response['choices']) > 0:
|
161 |
+
text = response['choices'][0].get('text', '').strip()
|
162 |
+
return text
|
163 |
+
else:
|
164 |
+
raise ValueError("No valid response generated")
|
165 |
+
|
166 |
+
except Exception as e:
|
167 |
+
logging.error(f"Error in query_model: {str(e)}")
|
168 |
+
raise
|
169 |
+
def preprocess_query(self, query: str) -> str:
|
170 |
+
"""Clean and prepare the query"""
|
171 |
+
query = query.lower().strip()
|
172 |
+
query = re.sub(r'\s+', ' ', query)
|
173 |
+
return query
|
174 |
+
|
175 |
+
def process_query(self, query: str, placeholder) -> str:
|
176 |
+
try:
|
177 |
+
# Preprocess query
|
178 |
+
query = self.preprocess_query(query)
|
179 |
+
|
180 |
+
# Show retrieval status
|
181 |
+
status = placeholder.empty()
|
182 |
+
status.write("π Finding relevant information...")
|
183 |
+
|
184 |
+
# Get embeddings and search
|
185 |
+
query_embedding = self.retriever.encode([query])
|
186 |
+
similarities = F.cosine_similarity(query_embedding, self.retriever.doc_embeddings)
|
187 |
+
scores, indices = torch.topk(similarities, k=min(self.k, len(self.documents)))
|
188 |
+
|
189 |
+
relevant_docs = [self.documents[idx] for idx in indices.tolist()]
|
190 |
+
|
191 |
+
# Update status
|
192 |
+
status.write("π Generating response...")
|
193 |
+
|
194 |
+
# Prepare context and prompt
|
195 |
+
context = "\n".join(relevant_docs[:3]) # Use top 3 most relevant docs
|
196 |
+
prompt = f"""Context information is below:
|
197 |
+
{context}
|
198 |
+
|
199 |
+
Given the context above, please answer the following question:
|
200 |
+
{query}
|
201 |
+
|
202 |
+
Guidelines:
|
203 |
+
- If you cannot answer based on the context, say so politely
|
204 |
+
- Keep the response concise and focused
|
205 |
+
- Only include sports-related information
|
206 |
+
- No dates or timestamps in the response
|
207 |
+
- Use clear, natural language
|
208 |
+
|
209 |
+
Answer:"""
|
210 |
+
|
211 |
+
# Generate response
|
212 |
+
response_placeholder = placeholder.empty()
|
213 |
+
|
214 |
+
try:
|
215 |
+
response_text = self.query_model(prompt)
|
216 |
+
if response_text:
|
217 |
+
final_response = self.postprocess_response(response_text)
|
218 |
+
response_placeholder.markdown(final_response)
|
219 |
+
return final_response
|
220 |
+
else:
|
221 |
+
message = "No relevant answer found. Please try rephrasing your question."
|
222 |
+
response_placeholder.warning(message)
|
223 |
+
return message
|
224 |
+
|
225 |
+
except Exception as e:
|
226 |
+
logging.error(f"Generation error: {str(e)}")
|
227 |
+
message = "Had some trouble generating the response. Please try again."
|
228 |
+
response_placeholder.warning(message)
|
229 |
+
return message
|
230 |
+
|
231 |
+
except Exception as e:
|
232 |
+
logging.error(f"Process error: {str(e)}")
|
233 |
+
message = "Something went wrong. Please try again with a different question."
|
234 |
+
placeholder.warning(message)
|
235 |
+
return message
|
236 |
+
|
237 |
+
def postprocess_response(self, response: str) -> str:
|
238 |
+
"""Clean up the generated response"""
|
239 |
+
response = response.strip()
|
240 |
+
response = re.sub(r'\s+', ' ', response)
|
241 |
+
response = re.sub(r'\d{4}-\d{2}-\d{2}\s\d{2}:\d{2}:\d{2}(?:\+\d{2}:?\d{2})?', '', response)
|
242 |
+
return response
|
243 |
+
|
244 |
+
|
245 |
+
# def process_query(self, query: str, placeholder) -> str:
|
246 |
+
# try:
|
247 |
+
# # Preprocess query
|
248 |
+
# query = self.preprocess_query(query)
|
249 |
+
|
250 |
+
# # Show retrieval status
|
251 |
+
# status = placeholder.empty()
|
252 |
+
# status.write("π Finding relevant information...")
|
253 |
+
|
254 |
+
# # Get embeddings and search using tensor operations
|
255 |
+
# query_embedding = self.retriever.encode([query])
|
256 |
+
# similarities = F.cosine_similarity(query_embedding, self.retriever.doc_embeddings)
|
257 |
+
# scores, indices = torch.topk(similarities, k=min(self.k, len(self.documents)))
|
258 |
+
|
259 |
+
# # Print search results for debugging
|
260 |
+
# print("\nSearch Results:")
|
261 |
+
# for idx, score in zip(indices.tolist(), scores.tolist()):
|
262 |
+
# print(f"Score: {score:.4f} | Document: {self.documents[idx][:100]}...")
|
263 |
+
|
264 |
+
# relevant_docs = [self.documents[idx] for idx in indices.tolist()]
|
265 |
+
|
266 |
+
# # Update status
|
267 |
+
# status.write("π Generating response...")
|
268 |
+
|
269 |
+
# # Prepare context and prompt
|
270 |
+
# context = "\n".join(relevant_docs[:3]) # Only use top 3 most relevant docs
|
271 |
+
# prompt = f"""Answer this question using the given context. Be specific and detailed.
|
272 |
+
|
273 |
+
# Context: {context}
|
274 |
+
|
275 |
+
# Question: {query}
|
276 |
+
|
277 |
+
# Answer (provide a complete, detailed response):"""
|
278 |
+
|
279 |
+
# # Generate response
|
280 |
+
# response_placeholder = placeholder.empty()
|
281 |
+
|
282 |
+
# try:
|
283 |
+
# response = requests.post(
|
284 |
+
# model_name,
|
285 |
+
# #headers=headers,
|
286 |
+
# json={
|
287 |
+
# "inputs": prompt,
|
288 |
+
# "parameters": {
|
289 |
+
# "max_new_tokens": 1024,
|
290 |
+
# "temperature": 0.5,
|
291 |
+
# "top_p": 0.9,
|
292 |
+
# "top_k": 50,
|
293 |
+
# "repetition_penalty": 1.03,
|
294 |
+
# "do_sample": True
|
295 |
+
# }
|
296 |
+
# },
|
297 |
+
# timeout=30
|
298 |
+
# ).json()
|
299 |
+
|
300 |
+
# if response and isinstance(response, list) and len(response) > 0:
|
301 |
+
# generated_text = response[0].get('generated_text', '').strip()
|
302 |
+
# if generated_text:
|
303 |
+
# # Find and extract only the answer part
|
304 |
+
# if "Answer:" in generated_text:
|
305 |
+
# answer_part = generated_text.split("Answer:")[-1].strip()
|
306 |
+
# elif "Answer (provide a complete, detailed response):" in generated_text:
|
307 |
+
# answer_part = generated_text.split("Answer (provide a complete, detailed response):")[-1].strip()
|
308 |
+
# else:
|
309 |
+
# answer_part = generated_text.strip()
|
310 |
+
|
311 |
+
# # Clean up the answer
|
312 |
+
# answer_part = answer_part.replace("Context:", "").replace("Question:", "")
|
313 |
+
|
314 |
+
# final_response = self.postprocess_response(answer_part)
|
315 |
+
# response_placeholder.markdown(final_response)
|
316 |
+
# return final_response
|
317 |
+
|
318 |
+
# message = "No relevant answer found. Please try rephrasing your question."
|
319 |
+
# response_placeholder.warning(message)
|
320 |
+
# return message
|
321 |
+
|
322 |
+
# except Exception as e:
|
323 |
+
# print(f"Generation error: {str(e)}")
|
324 |
+
# message = "Had some trouble generating the response. Please try again."
|
325 |
+
# response_placeholder.warning(message)
|
326 |
+
# return message
|
327 |
+
|
328 |
+
# except Exception as e:
|
329 |
+
# print(f"Process error: {str(e)}")
|
330 |
+
# message = "Something went wrong. Please try again with a different question."
|
331 |
+
# placeholder.warning(message)
|
332 |
+
# return message
|
333 |
+
def check_environment():
|
334 |
+
"""Check if the environment is properly set up"""
|
335 |
+
# if not headers['Authorization']:
|
336 |
+
# st.error("HUGGINGFACE_API_KEY environment variable not set!")
|
337 |
+
# st.stop()
|
338 |
+
# return False
|
339 |
+
|
340 |
+
try:
|
341 |
+
import torch
|
342 |
+
import sentence_transformers
|
343 |
+
return True
|
344 |
+
except ImportError as e:
|
345 |
+
st.error(f"Missing required package: {str(e)}")
|
346 |
+
st.stop()
|
347 |
+
return False
|
348 |
+
|
349 |
+
# @st.cache_resource
|
350 |
+
# def initialize_rag_pipeline():
|
351 |
+
# """Initialize the RAG pipeline once"""
|
352 |
+
# data_folder = "ESPN_data"
|
353 |
+
# return RAGPipeline(data_folder)
|
354 |
+
def check_space_requirements():
|
355 |
+
"""Check if we're running on HF Space and have necessary resources"""
|
356 |
+
try:
|
357 |
+
# Check if we're on HF Space
|
358 |
+
is_space = os.environ.get('SPACE_ID') is not None
|
359 |
+
|
360 |
+
if is_space:
|
361 |
+
# Check disk space
|
362 |
+
disk_space = os.statvfs('/')
|
363 |
+
free_space_gb = (disk_space.f_frsize * disk_space.f_bavail) / (1024**3)
|
364 |
+
|
365 |
+
if free_space_gb < 10: # Need at least 10GB free
|
366 |
+
st.warning(f"Low disk space: {free_space_gb:.1f}GB free")
|
367 |
+
|
368 |
+
# Check if model exists
|
369 |
+
model_path = "mistral-7b-v0.1.Q4_K_M.gguf"
|
370 |
+
if not os.path.exists(model_path):
|
371 |
+
st.info("Model will be downloaded on first run")
|
372 |
+
|
373 |
+
# Check if embeddings exist
|
374 |
+
if not os.path.exists('embeddings_cache/embeddings.pkl'):
|
375 |
+
st.info("Embeddings will be loaded from Drive")
|
376 |
+
|
377 |
+
return True
|
378 |
+
|
379 |
+
except Exception as e:
|
380 |
+
logging.error(f"Space requirements check failed: {str(e)}")
|
381 |
+
return False
|
382 |
+
|
383 |
+
@st.cache_resource(show_spinner=False)
|
384 |
+
def initialize_rag_pipeline():
|
385 |
+
"""Initialize the RAG pipeline once"""
|
386 |
+
try:
|
387 |
+
# First check/create necessary directories
|
388 |
+
for directory in ['models', 'ESPN_data', 'embeddings_cache']:
|
389 |
+
os.makedirs(directory, exist_ok=True)
|
390 |
+
|
391 |
+
# Load embeddings from Drive
|
392 |
+
drive_file_id = "1MuV63AE9o6zR9aBvdSDQOUextp71r2NN"
|
393 |
+
with st.spinner("Loading embeddings from Google Drive..."):
|
394 |
+
cache_data = load_from_drive(drive_file_id)
|
395 |
+
if cache_data is None:
|
396 |
+
st.error("Failed to load embeddings from Google Drive")
|
397 |
+
st.stop()
|
398 |
+
|
399 |
+
# Initialize pipeline
|
400 |
+
data_folder = "ESPN_data"
|
401 |
+
rag = RAGPipeline(data_folder) # This will automatically initialize the model through __init__
|
402 |
+
|
403 |
+
# Store embeddings
|
404 |
+
rag.documents = cache_data['documents']
|
405 |
+
rag.retriever.store_embeddings(cache_data['embeddings'])
|
406 |
+
|
407 |
+
st.success("System initialized successfully!")
|
408 |
+
return rag
|
409 |
+
|
410 |
+
except Exception as e:
|
411 |
+
logging.error(f"Pipeline initialization error: {str(e)}")
|
412 |
+
st.error(f"Failed to initialize the system: {str(e)}")
|
413 |
+
raise
|
414 |
+
|
415 |
+
except Exception as e:
|
416 |
+
logging.error(f"Pipeline initialization error: {str(e)}")
|
417 |
+
st.error(f"Failed to initialize the system: {str(e)}")
|
418 |
+
raise
|
419 |
+
|
420 |
+
def main():
|
421 |
+
try:
|
422 |
+
# Environment check
|
423 |
+
if not check_environment() or not check_space_requirements():
|
424 |
+
return
|
425 |
+
|
426 |
+
# Session state for initialization status
|
427 |
+
if 'initialized' not in st.session_state:
|
428 |
+
st.session_state.initialized = False
|
429 |
+
|
430 |
+
# Page config
|
431 |
+
st.set_page_config(
|
432 |
+
page_title="The Sport Chatbot",
|
433 |
+
page_icon="π",
|
434 |
+
layout="wide"
|
435 |
+
)
|
436 |
+
|
437 |
+
# Improved CSS styling
|
438 |
+
st.markdown("""
|
439 |
+
<style>
|
440 |
+
/* Container styling */
|
441 |
+
.block-container {
|
442 |
+
padding-top: 2rem;
|
443 |
+
padding-bottom: 2rem;
|
444 |
+
}
|
445 |
+
|
446 |
+
/* Text input styling */
|
447 |
+
.stTextInput > div > div > input {
|
448 |
+
width: 100%;
|
449 |
+
}
|
450 |
+
|
451 |
+
/* Button styling */
|
452 |
+
.stButton > button {
|
453 |
+
width: 200px;
|
454 |
+
margin: 0 auto;
|
455 |
+
display: block;
|
456 |
+
background-color: #FF4B4B;
|
457 |
+
color: white;
|
458 |
+
border-radius: 5px;
|
459 |
+
padding: 0.5rem 1rem;
|
460 |
+
}
|
461 |
+
|
462 |
+
/* Title styling */
|
463 |
+
.main-title {
|
464 |
+
text-align: center;
|
465 |
+
padding: 1rem 0;
|
466 |
+
font-size: 3rem;
|
467 |
+
color: #1F1F1F;
|
468 |
+
}
|
469 |
+
|
470 |
+
.sub-title {
|
471 |
+
text-align: center;
|
472 |
+
padding: 0.5rem 0;
|
473 |
+
font-size: 1.5rem;
|
474 |
+
color: #4F4F4F;
|
475 |
+
}
|
476 |
+
|
477 |
+
/* Description styling */
|
478 |
+
.description {
|
479 |
+
text-align: center;
|
480 |
+
color: #666666;
|
481 |
+
padding: 0.5rem 0;
|
482 |
+
font-size: 1.1rem;
|
483 |
+
line-height: 1.6;
|
484 |
+
margin-bottom: 1rem;
|
485 |
+
}
|
486 |
+
|
487 |
+
/* Answer container styling */
|
488 |
+
.stMarkdown {
|
489 |
+
max-width: 100%;
|
490 |
+
}
|
491 |
+
|
492 |
+
/* Streamlit default overrides */
|
493 |
+
.st-emotion-cache-16idsys p {
|
494 |
+
font-size: 1.1rem;
|
495 |
+
line-height: 1.6;
|
496 |
+
}
|
497 |
+
|
498 |
+
/* Container for main content */
|
499 |
+
.main-content {
|
500 |
+
max-width: 1200px;
|
501 |
+
margin: 0 auto;
|
502 |
+
padding: 0 1rem;
|
503 |
+
}
|
504 |
+
</style>
|
505 |
+
""", unsafe_allow_html=True)
|
506 |
+
|
507 |
+
# Header section with improved styling
|
508 |
+
st.markdown("<h1 class='main-title'>π The Sport Chatbot</h1>", unsafe_allow_html=True)
|
509 |
+
st.markdown("<h3 class='sub-title'>Using ESPN API</h3>", unsafe_allow_html=True)
|
510 |
+
st.markdown("""
|
511 |
+
<p class='description'>
|
512 |
+
Hey there! π I can help you with information on Ice Hockey, Baseball, American Football, Soccer, and Basketball.
|
513 |
+
With access to the ESPN API, I'm up to date with the latest details for these sports up until October 2024.
|
514 |
+
</p>
|
515 |
+
<p class='description'>
|
516 |
+
Got any general questions? Feel free to askβI'll do my best to provide answers based on the information I've been trained on!
|
517 |
+
</p>
|
518 |
+
""", unsafe_allow_html=True)
|
519 |
+
|
520 |
+
# Add some spacing
|
521 |
+
st.markdown("<br>", unsafe_allow_html=True)
|
522 |
+
|
523 |
+
# Initialize the pipeline
|
524 |
+
if not st.session_state.initialized:
|
525 |
+
try:
|
526 |
+
with st.spinner("Loading resources..."):
|
527 |
+
# Create necessary directories
|
528 |
+
for directory in ['models', 'ESPN_data', 'embeddings_cache']:
|
529 |
+
os.makedirs(directory, exist_ok=True)
|
530 |
+
|
531 |
+
# Initialize RAG pipeline
|
532 |
+
st.session_state.rag = initialize_rag_pipeline()
|
533 |
+
st.session_state.initialized = True
|
534 |
+
|
535 |
+
st.success("System initialized successfully!")
|
536 |
+
except Exception as e:
|
537 |
+
logging.error(f"Initialization error: {str(e)}")
|
538 |
+
st.error("Unable to initialize the system. Please check if all required files are present.")
|
539 |
+
st.stop()
|
540 |
+
|
541 |
+
# Create columns for layout with golden ratio
|
542 |
+
col1, col2, col3 = st.columns([1, 6, 1])
|
543 |
+
|
544 |
+
with col2:
|
545 |
+
# Query input with label styling
|
546 |
+
query = st.text_input("What would you like to know about sports?")
|
547 |
+
|
548 |
+
# Centered button
|
549 |
+
if st.button("Get Answer"):
|
550 |
+
if query:
|
551 |
+
response_placeholder = st.empty()
|
552 |
+
try:
|
553 |
+
# Get response from RAG pipeline
|
554 |
+
response = st.session_state.rag.process_query(query, response_placeholder)
|
555 |
+
logging.info(f"Generated response: {response}")
|
556 |
+
except Exception as e:
|
557 |
+
logging.error(f"Query processing error: {str(e)}")
|
558 |
+
response_placeholder.warning("Unable to process your question. Please try again.")
|
559 |
+
else:
|
560 |
+
st.warning("Please enter a question!")
|
561 |
+
|
562 |
+
# Footer with improved styling
|
563 |
+
st.markdown("<br><br>", unsafe_allow_html=True)
|
564 |
+
st.markdown("---")
|
565 |
+
st.markdown("""
|
566 |
+
<p style='text-align: center; color: #666666; padding: 1rem 0;'>
|
567 |
+
Powered by ESPN Data & Mistral AI π<br>
|
568 |
+
<small>Running on Hugging Face Spaces</small>
|
569 |
+
</p>
|
570 |
+
""", unsafe_allow_html=True)
|
571 |
+
|
572 |
+
except Exception as e:
|
573 |
+
logging.error(f"Application error: {str(e)}")
|
574 |
+
st.error("An unexpected error occurred. Please check the logs and try again.")
|
575 |
+
|
576 |
+
if __name__ == "__main__":
|
577 |
+
try:
|
578 |
+
main()
|
579 |
+
except Exception as e:
|
580 |
+
logging.error(f"Application error: {str(e)}")
|
581 |
+
st.error("An unexpected error occurred. Please check the logs and try again.")
|