Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -164,37 +164,39 @@ class RAGPipeline:
|
|
164 |
query = re.sub(r'\s+', ' ', query)
|
165 |
return query
|
166 |
|
167 |
-
|
168 |
-
"""Clean up the generated response"""
|
169 |
-
response = response.strip()
|
170 |
-
response = re.sub(r'\s+', ' ', response)
|
171 |
-
response = re.sub(r'\d{4}-\d{2}-\d{2}\s\d{2}:\d{2}:\d{2}(?:\+\d{2}:?\d{2})?', '', response)
|
172 |
-
return response
|
173 |
|
174 |
-
def
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
|
199 |
# def process_query(self, query: str, placeholder) -> str:
|
200 |
# try:
|
@@ -258,90 +260,213 @@ class RAGPipeline:
|
|
258 |
# placeholder.warning(message)
|
259 |
# return message
|
260 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
def process_query(self, query: str, placeholder) -> str:
|
262 |
try:
|
263 |
-
# Preprocess query
|
264 |
query = self.preprocess_query(query)
|
265 |
-
logging.info(f"Processing query: {query}")
|
266 |
-
|
267 |
-
# Show retrieval status
|
268 |
status = placeholder.empty()
|
269 |
status.write("🔍 Finding relevant information...")
|
270 |
-
|
271 |
-
# Get embeddings and search
|
272 |
query_embedding = self.retriever.encode([query])
|
273 |
similarities = F.cosine_similarity(query_embedding, self.retriever.doc_embeddings)
|
274 |
scores, indices = torch.topk(similarities, k=min(self.k, len(self.documents)))
|
275 |
-
|
276 |
-
# Log similarity scores
|
277 |
-
for idx, score in zip(indices.tolist(), scores.tolist()):
|
278 |
-
logging.info(f"Score: {score:.4f} | Document: {self.documents[idx][:100]}...")
|
279 |
-
|
280 |
relevant_docs = [self.documents[idx] for idx in indices.tolist()]
|
|
|
|
|
|
|
|
|
|
|
281 |
|
282 |
-
# Update status
|
283 |
status.write("💭 Generating response...")
|
284 |
-
|
285 |
-
# Prepare context and prompt
|
286 |
-
context = "\n".join(relevant_docs[:3])
|
287 |
prompt = f"""Context information is below:
|
288 |
-
{
|
289 |
-
|
290 |
Given the context above, please answer the following question:
|
291 |
{query}
|
292 |
-
|
293 |
-
Guidelines:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
294 |
- If you cannot answer based on the context, say so politely
|
295 |
-
- Keep the response concise and focused
|
296 |
-
- Only include sports-related information
|
297 |
-
- No dates or timestamps in the response
|
298 |
-
- Use clear, natural language
|
299 |
|
|
|
|
|
300 |
Answer:"""
|
301 |
-
|
302 |
-
# Generate response
|
303 |
response_placeholder = placeholder.empty()
|
304 |
-
|
305 |
-
try:
|
306 |
-
# Add logging for model state
|
307 |
-
logging.info("Model state check - Is None?: " + str(self.llm is None))
|
308 |
-
|
309 |
-
# Directly use Llama model
|
310 |
-
response = self.llm(
|
311 |
-
prompt,
|
312 |
-
max_tokens=512,
|
313 |
-
temperature=0.4,
|
314 |
-
top_p=0.95,
|
315 |
-
echo=False,
|
316 |
-
stop=["Question:", "\n\n"]
|
317 |
-
)
|
318 |
-
|
319 |
-
logging.info(f"Raw model response: {response}")
|
320 |
-
|
321 |
-
if response and isinstance(response, dict) and 'choices' in response:
|
322 |
-
generated_text = response['choices'][0].get('text', '').strip()
|
323 |
-
if generated_text:
|
324 |
-
final_response = self.postprocess_response(generated_text)
|
325 |
-
response_placeholder.markdown(final_response)
|
326 |
-
return final_response
|
327 |
-
|
328 |
-
message = "No relevant answer found. Please try rephrasing your question."
|
329 |
-
response_placeholder.warning(message)
|
330 |
-
return message
|
331 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
332 |
except Exception as e:
|
333 |
logging.error(f"Generation error: {str(e)}")
|
334 |
-
|
335 |
-
message = f"Had some trouble generating the response: {str(e)}"
|
336 |
response_placeholder.warning(message)
|
337 |
return message
|
338 |
-
|
339 |
except Exception as e:
|
340 |
logging.error(f"Process error: {str(e)}")
|
341 |
-
|
342 |
-
message = f"Something went wrong: {str(e)}"
|
343 |
placeholder.warning(message)
|
344 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
345 |
|
346 |
@st.cache_resource(show_spinner=False)
|
347 |
def initialize_rag_pipeline():
|
|
|
164 |
query = re.sub(r'\s+', ' ', query)
|
165 |
return query
|
166 |
|
167 |
+
### Added on Nov 2, 2024
|
|
|
|
|
|
|
|
|
|
|
168 |
|
169 |
+
# def postprocess_response(self, response: str) -> str:
|
170 |
+
# """Clean up the generated response"""
|
171 |
+
# response = response.strip()
|
172 |
+
# response = re.sub(r'\s+', ' ', response)
|
173 |
+
# response = re.sub(r'\d{4}-\d{2}-\d{2}\s\d{2}:\d{2}:\d{2}(?:\+\d{2}:?\d{2})?', '', response)
|
174 |
+
# return response
|
175 |
+
|
176 |
+
# def query_model(self, prompt: str) -> str:
|
177 |
+
# """Query the local Llama model"""
|
178 |
+
# try:
|
179 |
+
# if self.llm is None:
|
180 |
+
# raise RuntimeError("Model not initialized")
|
181 |
|
182 |
+
# response = self.llm(
|
183 |
+
# prompt,
|
184 |
+
# max_tokens=512,
|
185 |
+
# temperature=0.4,
|
186 |
+
# top_p=0.95,
|
187 |
+
# echo=False,
|
188 |
+
# stop=["Question:", "\n\n"]
|
189 |
+
# )
|
190 |
+
|
191 |
+
# if response and 'choices' in response and len(response['choices']) > 0:
|
192 |
+
# text = response['choices'][0].get('text', '').strip()
|
193 |
+
# return text
|
194 |
+
# else:
|
195 |
+
# raise ValueError("No valid response generated")
|
196 |
|
197 |
+
# except Exception as e:
|
198 |
+
# logging.error(f"Error in query_model: {str(e)}")
|
199 |
+
# raise
|
200 |
|
201 |
# def process_query(self, query: str, placeholder) -> str:
|
202 |
# try:
|
|
|
260 |
# placeholder.warning(message)
|
261 |
# return message
|
262 |
|
263 |
+
# def process_query(self, query: str, placeholder) -> str:
|
264 |
+
# try:
|
265 |
+
# # Preprocess query
|
266 |
+
# query = self.preprocess_query(query)
|
267 |
+
# logging.info(f"Processing query: {query}")
|
268 |
+
|
269 |
+
# # Show retrieval status
|
270 |
+
# status = placeholder.empty()
|
271 |
+
# status.write("🔍 Finding relevant information...")
|
272 |
+
|
273 |
+
# # Get embeddings and search
|
274 |
+
# query_embedding = self.retriever.encode([query])
|
275 |
+
# similarities = F.cosine_similarity(query_embedding, self.retriever.doc_embeddings)
|
276 |
+
# scores, indices = torch.topk(similarities, k=min(self.k, len(self.documents)))
|
277 |
+
|
278 |
+
# # Log similarity scores
|
279 |
+
# for idx, score in zip(indices.tolist(), scores.tolist()):
|
280 |
+
# logging.info(f"Score: {score:.4f} | Document: {self.documents[idx][:100]}...")
|
281 |
+
|
282 |
+
# relevant_docs = [self.documents[idx] for idx in indices.tolist()]
|
283 |
+
|
284 |
+
# # Update status
|
285 |
+
# status.write("💭 Generating response...")
|
286 |
+
|
287 |
+
# # Prepare context and prompt
|
288 |
+
# context = "\n".join(relevant_docs[:3])
|
289 |
+
# prompt = f"""Context information is below:
|
290 |
+
# {context}
|
291 |
+
|
292 |
+
# Given the context above, please answer the following question:
|
293 |
+
# {query}
|
294 |
+
|
295 |
+
# Guidelines:
|
296 |
+
# - If you cannot answer based on the context, say so politely
|
297 |
+
# - Keep the response concise and focused
|
298 |
+
# - Only include sports-related information
|
299 |
+
# - No dates or timestamps in the response
|
300 |
+
# - Use clear, natural language
|
301 |
+
|
302 |
+
# Answer:"""
|
303 |
+
|
304 |
+
# # Generate response
|
305 |
+
# response_placeholder = placeholder.empty()
|
306 |
+
|
307 |
+
# try:
|
308 |
+
# # Add logging for model state
|
309 |
+
# logging.info("Model state check - Is None?: " + str(self.llm is None))
|
310 |
+
|
311 |
+
# # Directly use Llama model
|
312 |
+
# response = self.llm(
|
313 |
+
# prompt,
|
314 |
+
# max_tokens=512,
|
315 |
+
# temperature=0.4,
|
316 |
+
# top_p=0.95,
|
317 |
+
# echo=False,
|
318 |
+
# stop=["Question:", "\n\n"]
|
319 |
+
# )
|
320 |
+
|
321 |
+
# logging.info(f"Raw model response: {response}")
|
322 |
+
|
323 |
+
# if response and isinstance(response, dict) and 'choices' in response:
|
324 |
+
# generated_text = response['choices'][0].get('text', '').strip()
|
325 |
+
# if generated_text:
|
326 |
+
# final_response = self.postprocess_response(generated_text)
|
327 |
+
# response_placeholder.markdown(final_response)
|
328 |
+
# return final_response
|
329 |
+
|
330 |
+
# message = "No relevant answer found. Please try rephrasing your question."
|
331 |
+
# response_placeholder.warning(message)
|
332 |
+
# return message
|
333 |
+
|
334 |
+
# except Exception as e:
|
335 |
+
# logging.error(f"Generation error: {str(e)}")
|
336 |
+
# logging.error(f"Full error details: ", exc_info=True)
|
337 |
+
# message = f"Had some trouble generating the response: {str(e)}"
|
338 |
+
# response_placeholder.warning(message)
|
339 |
+
# return message
|
340 |
+
|
341 |
+
# except Exception as e:
|
342 |
+
# logging.error(f"Process error: {str(e)}")
|
343 |
+
# logging.error(f"Full error details: ", exc_info=True)
|
344 |
+
# message = f"Something went wrong: {str(e)}"
|
345 |
+
# placeholder.warning(message)
|
346 |
+
# return message
|
347 |
+
|
348 |
+
### Added on Nov 2, 2024
|
349 |
+
def postprocess_response(self, response: str) -> str:
|
350 |
+
"""Clean up the generated response"""
|
351 |
+
try:
|
352 |
+
# Remove datetime patterns and other unwanted content
|
353 |
+
response = re.sub(r'\d{4}-\d{2}-\d{2}(?:T|\s)\d{2}:\d{2}:\d{2}(?:\.\d+)?(?:Z|[+-]\d{2}:?\d{2})?', '', response)
|
354 |
+
response = re.sub(r'User \d+:.*?(?=User \d+:|$)', '', response)
|
355 |
+
response = re.sub(r'\d{2}:\d{2}(?::\d{2})?(?:\s?(?:AM|PM))?', '', response)
|
356 |
+
response = re.sub(r'\d{1,2}[-/]\d{1,2}[-/]\d{2,4}', '', response)
|
357 |
+
response = re.sub(r'(?m)^User \d+:', '', response)
|
358 |
+
|
359 |
+
# Clean up spacing but preserve intentional paragraph breaks
|
360 |
+
# Replace multiple newlines with two newlines (one paragraph break)
|
361 |
+
response = re.sub(r'\n\s*\n\s*\n+', '\n\n', response)
|
362 |
+
# Replace multiple spaces with single space
|
363 |
+
response = re.sub(r' +', ' ', response)
|
364 |
+
# Clean up beginning/end
|
365 |
+
response = response.strip()
|
366 |
+
|
367 |
+
return response
|
368 |
+
except Exception as e:
|
369 |
+
logging.error(f"Error in postprocess_response: {str(e)}")
|
370 |
+
return response
|
371 |
+
|
372 |
def process_query(self, query: str, placeholder) -> str:
|
373 |
try:
|
|
|
374 |
query = self.preprocess_query(query)
|
|
|
|
|
|
|
375 |
status = placeholder.empty()
|
376 |
status.write("🔍 Finding relevant information...")
|
377 |
+
|
|
|
378 |
query_embedding = self.retriever.encode([query])
|
379 |
similarities = F.cosine_similarity(query_embedding, self.retriever.doc_embeddings)
|
380 |
scores, indices = torch.topk(similarities, k=min(self.k, len(self.documents)))
|
381 |
+
|
|
|
|
|
|
|
|
|
382 |
relevant_docs = [self.documents[idx] for idx in indices.tolist()]
|
383 |
+
cleaned_docs = []
|
384 |
+
for doc in relevant_docs[:3]:
|
385 |
+
cleaned_text = self.postprocess_response(doc)
|
386 |
+
if cleaned_text:
|
387 |
+
cleaned_docs.append(cleaned_text)
|
388 |
|
|
|
389 |
status.write("💭 Generating response...")
|
390 |
+
|
|
|
|
|
391 |
prompt = f"""Context information is below:
|
392 |
+
{' '.join(cleaned_docs)}
|
393 |
+
|
394 |
Given the context above, please answer the following question:
|
395 |
{query}
|
396 |
+
|
397 |
+
Guidelines for your response:
|
398 |
+
- Structure your response in clear, logical paragraphs
|
399 |
+
- Start a new paragraph for each new main point or aspect
|
400 |
+
- If listing multiple items, use separate paragraphs
|
401 |
+
- Keep each paragraph focused on a single topic or point
|
402 |
+
- Use natural paragraph breaks where the content shifts focus
|
403 |
+
- Maintain clear transitions between paragraphs
|
404 |
+
- If providing statistics or achievements, group them logically
|
405 |
+
- If describing different aspects (e.g., career, playing style, achievements), use separate paragraphs
|
406 |
+
- Keep paragraphs concise but complete
|
407 |
+
- Exclude any dates, timestamps, or user comments
|
408 |
+
- Focus on factual sports information
|
409 |
- If you cannot answer based on the context, say so politely
|
|
|
|
|
|
|
|
|
410 |
|
411 |
+
Format your response with proper paragraph breaks where appropriate.
|
412 |
+
|
413 |
Answer:"""
|
414 |
+
|
|
|
415 |
response_placeholder = placeholder.empty()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
416 |
|
417 |
+
try:
|
418 |
+
response_text = self.query_model(prompt)
|
419 |
+
if response_text:
|
420 |
+
# Clean up the response while preserving paragraph structure
|
421 |
+
final_response = self.postprocess_response(response_text)
|
422 |
+
|
423 |
+
# Convert cleaned response to markdown with proper paragraph spacing
|
424 |
+
markdown_response = final_response.replace('\n\n', '\n\n \n\n') # Add visual spacing between paragraphs
|
425 |
+
|
426 |
+
response_placeholder.markdown(markdown_response)
|
427 |
+
return final_response
|
428 |
+
else:
|
429 |
+
message = "No relevant answer found. Please try rephrasing your question."
|
430 |
+
response_placeholder.warning(message)
|
431 |
+
return message
|
432 |
+
|
433 |
except Exception as e:
|
434 |
logging.error(f"Generation error: {str(e)}")
|
435 |
+
message = "Had some trouble generating the response. Please try again."
|
|
|
436 |
response_placeholder.warning(message)
|
437 |
return message
|
438 |
+
|
439 |
except Exception as e:
|
440 |
logging.error(f"Process error: {str(e)}")
|
441 |
+
message = "Something went wrong. Please try again with a different question."
|
|
|
442 |
placeholder.warning(message)
|
443 |
+
return messag
|
444 |
+
|
445 |
+
def query_model(self, prompt: str) -> str:
|
446 |
+
"""Query the local Llama model"""
|
447 |
+
try:
|
448 |
+
if self.llm is None:
|
449 |
+
raise RuntimeError("Model not initialized")
|
450 |
+
|
451 |
+
response = self.llm(
|
452 |
+
prompt,
|
453 |
+
max_tokens=512,
|
454 |
+
temperature=0.4,
|
455 |
+
top_p=0.95,
|
456 |
+
echo=False,
|
457 |
+
stop=["Question:", "Context:", "Guidelines:"], # Removed \n\n from stop tokens to allow paragraphs
|
458 |
+
repeat_penalty=1.1 # Added to encourage more diverse text
|
459 |
+
)
|
460 |
+
|
461 |
+
if response and 'choices' in response and len(response['choices']) > 0:
|
462 |
+
text = response['choices'][0].get('text', '').strip()
|
463 |
+
return text
|
464 |
+
else:
|
465 |
+
raise ValueError("No valid response generated")
|
466 |
+
|
467 |
+
except Exception as e:
|
468 |
+
logging.error(f"Error in query_model: {str(e)}")
|
469 |
+
raise
|
470 |
|
471 |
@st.cache_resource(show_spinner=False)
|
472 |
def initialize_rag_pipeline():
|