AutoTrainSpace / app.py
nikunjcepatel's picture
Update app.py
493e2db verified
import gradio as gr
import os
import re
import json
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments, pipeline
from transformers import DataCollatorWithPadding
from huggingface_hub import login
# Retrieve the Hugging Face token from the Space secrets
token = os.getenv("HF_TOKEN")
# Log in using the token
login(token=token)
# Load the dataset
dataset = load_dataset('json', data_files='dataset.json')
# Tokenize the dataset
# Step 6: Tokenize the dataset
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2", token=token)
tokenizer.pad_token = tokenizer.eos_token # Set pad_token to eos_token
# Tokenize the data and ensure labels are set
def tokenize_function(examples):
# Tokenize input text, adding labels for causal language modeling
inputs = tokenizer(examples["text"], truncation=True, padding="max_length", max_length=256)
# The labels are the input_ids shifted by one token (for causal language modeling)
inputs["labels"] = inputs["input_ids"].copy() # Copy the input_ids for labels
return inputs
tokenized_datasets = dataset.map(tokenize_function, batched=True)
# Data collator
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
# Split dataset into training and validation
tokenized_datasets = tokenized_datasets['train'].train_test_split(test_size=0.1)
train_dataset = tokenized_datasets["train"]
eval_dataset = tokenized_datasets["test"]
# Fine-tune the model
model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2", token=token)
training_args = TrainingArguments(
output_dir="./results",
eval_strategy="epoch",
learning_rate=2e-5,
per_device_train_batch_size=4, # Reduced batch size
per_device_eval_batch_size=4, # Reduced batch size
num_train_epochs=3,
weight_decay=0.01,
report_to="none", # Disables wandb logging
fp16=True, # Enable mixed precision (use 16-bit instead of 32-bit precision)
gradient_accumulation_steps=8, # Accumulate gradients over 8 steps
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
data_collator=data_collator
)
trainer.train()
# Save the model
model.save_pretrained("./fine-tuned-gpt2")
tokenizer.save_pretrained("./fine-tuned-gpt2")
# Evaluate the model
#results = trainer.evaluate()
#print(results)
# Create a Gradio interface for text generation
def generate_text(prompt):
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(inputs["input_ids"], max_length=50, num_return_sequences=1)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
iface = gr.Interface(fn=generate_text, inputs="text", outputs="text")
iface.launch()