Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
import re | |
import json | |
from datasets import load_dataset | |
from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments, pipeline | |
from transformers import DataCollatorWithPadding | |
from huggingface_hub import login | |
# Retrieve the Hugging Face token from the Space secrets | |
token = os.getenv("HF_TOKEN") | |
# Log in using the token | |
login(token=token) | |
# Load the dataset | |
dataset = load_dataset('json', data_files='dataset.json') | |
# Tokenize the dataset | |
# Step 6: Tokenize the dataset | |
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2", token=token) | |
tokenizer.pad_token = tokenizer.eos_token # Set pad_token to eos_token | |
# Tokenize the data and ensure labels are set | |
def tokenize_function(examples): | |
# Tokenize input text, adding labels for causal language modeling | |
inputs = tokenizer(examples["text"], truncation=True, padding="max_length", max_length=256) | |
# The labels are the input_ids shifted by one token (for causal language modeling) | |
inputs["labels"] = inputs["input_ids"].copy() # Copy the input_ids for labels | |
return inputs | |
tokenized_datasets = dataset.map(tokenize_function, batched=True) | |
# Data collator | |
data_collator = DataCollatorWithPadding(tokenizer=tokenizer) | |
# Split dataset into training and validation | |
tokenized_datasets = tokenized_datasets['train'].train_test_split(test_size=0.1) | |
train_dataset = tokenized_datasets["train"] | |
eval_dataset = tokenized_datasets["test"] | |
# Fine-tune the model | |
model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2", token=token) | |
training_args = TrainingArguments( | |
output_dir="./results", | |
eval_strategy="epoch", | |
learning_rate=2e-5, | |
per_device_train_batch_size=4, # Reduced batch size | |
per_device_eval_batch_size=4, # Reduced batch size | |
num_train_epochs=3, | |
weight_decay=0.01, | |
report_to="none", # Disables wandb logging | |
fp16=True, # Enable mixed precision (use 16-bit instead of 32-bit precision) | |
gradient_accumulation_steps=8, # Accumulate gradients over 8 steps | |
) | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=train_dataset, | |
eval_dataset=eval_dataset, | |
data_collator=data_collator | |
) | |
trainer.train() | |
# Save the model | |
model.save_pretrained("./fine-tuned-gpt2") | |
tokenizer.save_pretrained("./fine-tuned-gpt2") | |
# Evaluate the model | |
#results = trainer.evaluate() | |
#print(results) | |
# Create a Gradio interface for text generation | |
def generate_text(prompt): | |
inputs = tokenizer(prompt, return_tensors="pt") | |
outputs = model.generate(inputs["input_ids"], max_length=50, num_return_sequences=1) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
iface = gr.Interface(fn=generate_text, inputs="text", outputs="text") | |
iface.launch() |