import gradio as gr from huggingface_hub import InferenceClient import spaces from transformers import AutoModelForCausalLM, AutoTokenizer from transformers import BitsAndBytesConfig import torch # پیکربندی quantization به صورت 4 بیتی quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, ) @spaces.GPU def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" MODEL_PATH = "THUDM/GLM-Z1-9B-0414" tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH) model = AutoModelForCausalLM.from_pretrained( MODEL_PATH, device_map="auto", quantization_config=quantization_config, torch_dtype=torch.float16 ) inputs = tokenizer.apply_chat_template( messages, # تغییر از message به messages return_tensors="pt", add_generation_prompt=True, return_dict=True, ).to(model.device) generate_kwargs = { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "max_new_tokens": max_tokens, "temperature": temperature, "top_p": top_p, "do_sample": True if temperature > 0 else False, } out = model.generate(**generate_kwargs) response = tokenizer.decode(out[0][inputs["input_ids"].shape[1]:], skip_special_tokens=True) yield response demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()