Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,17 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
import spaces
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
@spaces.GPU
|
10 |
def respond(
|
@@ -27,17 +34,18 @@ def respond(
|
|
27 |
|
28 |
response = ""
|
29 |
|
30 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
31 |
-
|
32 |
MODEL_PATH = "THUDM/GLM-4-Z1-32B-0414"
|
33 |
|
34 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
|
35 |
-
model = AutoModelForCausalLM.from_pretrained(
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
38 |
|
39 |
inputs = tokenizer.apply_chat_template(
|
40 |
-
message
|
41 |
return_tensors="pt",
|
42 |
add_generation_prompt=True,
|
43 |
return_dict=True,
|
@@ -46,29 +54,17 @@ def respond(
|
|
46 |
generate_kwargs = {
|
47 |
"input_ids": inputs["input_ids"],
|
48 |
"attention_mask": inputs["attention_mask"],
|
49 |
-
"max_new_tokens":
|
50 |
-
"
|
|
|
|
|
51 |
}
|
|
|
52 |
out = model.generate(**generate_kwargs)
|
53 |
-
response=
|
54 |
|
55 |
yield response
|
56 |
-
# for message in client.chat_completion(
|
57 |
-
# messages,
|
58 |
-
# max_tokens=max_tokens,
|
59 |
-
# stream=True,
|
60 |
-
# temperature=temperature,
|
61 |
-
# top_p=top_p,
|
62 |
-
# ):
|
63 |
-
# token = message.choices[0].delta.content
|
64 |
-
|
65 |
-
# response += token
|
66 |
-
# yield response
|
67 |
|
68 |
-
|
69 |
-
"""
|
70 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
71 |
-
"""
|
72 |
demo = gr.ChatInterface(
|
73 |
respond,
|
74 |
additional_inputs=[
|
@@ -85,6 +81,5 @@ demo = gr.ChatInterface(
|
|
85 |
],
|
86 |
)
|
87 |
|
88 |
-
|
89 |
if __name__ == "__main__":
|
90 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
import spaces
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
+
from transformers import BitsAndBytesConfig
|
6 |
+
import torch
|
7 |
+
|
8 |
+
# پیکربندی quantization به صورت 4 بیتی
|
9 |
+
quantization_config = BitsAndBytesConfig(
|
10 |
+
load_in_4bit=True,
|
11 |
+
bnb_4bit_compute_dtype=torch.float16,
|
12 |
+
bnb_4bit_quant_type="nf4",
|
13 |
+
bnb_4bit_use_double_quant=True,
|
14 |
+
)
|
15 |
|
16 |
@spaces.GPU
|
17 |
def respond(
|
|
|
34 |
|
35 |
response = ""
|
36 |
|
|
|
|
|
37 |
MODEL_PATH = "THUDM/GLM-4-Z1-32B-0414"
|
38 |
|
39 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
|
40 |
+
model = AutoModelForCausalLM.from_pretrained(
|
41 |
+
MODEL_PATH,
|
42 |
+
device_map="auto",
|
43 |
+
quantization_config=quantization_config,
|
44 |
+
torch_dtype=torch.float16
|
45 |
+
)
|
46 |
|
47 |
inputs = tokenizer.apply_chat_template(
|
48 |
+
messages, # تغییر از message به messages
|
49 |
return_tensors="pt",
|
50 |
add_generation_prompt=True,
|
51 |
return_dict=True,
|
|
|
54 |
generate_kwargs = {
|
55 |
"input_ids": inputs["input_ids"],
|
56 |
"attention_mask": inputs["attention_mask"],
|
57 |
+
"max_new_tokens": max_tokens,
|
58 |
+
"temperature": temperature,
|
59 |
+
"top_p": top_p,
|
60 |
+
"do_sample": True if temperature > 0 else False,
|
61 |
}
|
62 |
+
|
63 |
out = model.generate(**generate_kwargs)
|
64 |
+
response = tokenizer.decode(out[0][inputs["input_ids"].shape[1]:], skip_special_tokens=True)
|
65 |
|
66 |
yield response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
|
|
|
|
|
|
|
|
68 |
demo = gr.ChatInterface(
|
69 |
respond,
|
70 |
additional_inputs=[
|
|
|
81 |
],
|
82 |
)
|
83 |
|
|
|
84 |
if __name__ == "__main__":
|
85 |
+
demo.launch()
|