Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import gradio as gr | |
import spaces | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig | |
import os | |
from threading import Thread | |
from accelerate import init_empty_weights | |
max_memory = { | |
0: "30GiB", | |
"cpu": "64GiB", | |
} | |
MODEL_LIST = ["THUDM/GLM-4-Z1-32B-0414"] | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
MODEL_ID = MODEL_LIST[0] | |
MODEL_NAME = "GLM-4-Z1-32B-0414" | |
TITLE = "<h1>3ML-bot (Text Only)</h1>" | |
DESCRIPTION = f""" | |
<center> | |
<p>😊 A Multi-Lingual Analytical Chatbot. | |
<br> | |
🚀 MODEL NOW: <a href="https://hf.co/nikravan/GLM4-Z-0414">{MODEL_NAME}</a> | |
</center>""" | |
CSS = """ | |
h1 { | |
text-align: center; | |
display: block; | |
} | |
""" | |
# Configure BitsAndBytes for 4-bit quantization | |
quantization_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_compute_dtype=torch.bfloat16, | |
bnb_4bit_quant_type="nf4", | |
bnb_4bit_use_double_quant=True, | |
) | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True) | |
def stream_chat(message, history: list, temperature: float, max_length: int, top_p: float, top_k: int, penalty: float): | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_ID, | |
torch_dtype=torch.bfloat16, | |
low_cpu_mem_usage=True, | |
trust_remote_code=True, | |
quantization_config=quantization_config, | |
device_map="auto", | |
max_memory=max_memory, | |
) | |
print(f'message is - {message}') | |
print(f'history is - {history}') | |
conversation = [] | |
if len(history) > 0: | |
for prompt, answer in history: | |
conversation.extend([ | |
{"role": "user", "content": prompt}, | |
{"role": "assistant", "content": answer} | |
]) | |
conversation.append({"role": "user", "content": message}) | |
print(f"Conversation is -\n{conversation}") | |
input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True, | |
return_tensors="pt", return_dict=True).to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
max_length=max_length, | |
streamer=streamer, | |
do_sample=True, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
repetition_penalty=penalty, | |
eos_token_id=[151329, 151336, 151338], | |
) | |
gen_kwargs = {**input_ids, **generate_kwargs} | |
with torch.no_grad(): | |
thread = Thread(target=model.generate, kwargs=gen_kwargs) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
yield buffer | |
chatbot = gr.Chatbot() | |
chat_input = gr.Textbox( | |
interactive=True, | |
placeholder="Enter your message here...", | |
show_label=False, | |
) | |
EXAMPLES = [ | |
["Analyze the geopolitical implications of recent technological advancements in AI ."], | |
["¿Cuáles son los desafíos éticos más importantes en el desarrollo de la inteligencia artificial general?"], | |
["从经济学和社会学角度分析,人工智能将如何改变未来的就业市场?"], | |
["ما هي التحديات الرئيسية التي تواجه تطوير الذكاء الاصطناعي في العالم العربي؟"], | |
["नैतिक कृत्रिम बुद्धिमत्ता विकास में सबसे बड़ी चुनौतियाँ क्या हैं? विस्तार से समझाइए।"], | |
["Кои са основните предизвикателства пред разработването на изкуствен интелект в България и Източна Европа?"], | |
["Explain the potential risks and benefits of quantum computing in national security contexts."], | |
["分析气候变化对全球经济不平等的影响,并提出可能的解决方案。"], | |
] | |
with gr.Blocks(css=CSS, theme="soft", fill_height=True) as demo: | |
gr.HTML(TITLE) | |
gr.HTML(DESCRIPTION) | |
gr.ChatInterface( | |
fn=stream_chat, | |
textbox=chat_input, | |
chatbot=chatbot, | |
fill_height=True, | |
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), | |
additional_inputs=[ | |
gr.Slider( | |
minimum=0, | |
maximum=1, | |
step=0.1, | |
value=0.8, | |
label="Temperature", | |
render=False, | |
), | |
gr.Slider( | |
minimum=1024, | |
maximum=8192, | |
step=1, | |
value=4096, | |
label="Max Length", | |
render=False, | |
), | |
gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
step=0.1, | |
value=1.0, | |
label="top_p", | |
render=False, | |
), | |
gr.Slider( | |
minimum=1, | |
maximum=20, | |
step=1, | |
value=10, | |
label="top_k", | |
render=False, | |
), | |
gr.Slider( | |
minimum=0.0, | |
maximum=2.0, | |
step=0.1, | |
value=1.0, | |
label="Repetition penalty", | |
render=False, | |
), | |
], | |
examples=EXAMPLES, | |
) | |
if __name__ == "__main__": | |
demo.queue(api_open=False).launch(show_api=False, share=False) |