File size: 5,196 Bytes
4fffb92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4416f67
4fffb92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73cc773
4fffb92
 
 
 
 
 
 
 
 
73cc773
4fffb92
 
 
 
 
73cc773
 
4fffb92
 
 
 
 
 
5e01120
4fffb92
632c85c
 
 
4fffb92
 
 
73cc773
4fffb92
 
 
 
 
 
 
 
 
 
 
 
e0e61c8
4fffb92
51117d5
c1e25af
4fffb92
 
 
 
 
 
 
 
 
 
 
 
5db9e1e
4fffb92
 
 
 
6dc5501
4fffb92
 
e3c1188
4fffb92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd2cc25
4fffb92
 
3216229
4fffb92
 
 
 
 
 
 
3216229
4fffb92
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163


## Setup
# Import the necessary Libraries
import json
import uuid
import os
from groq import Groq
import gradio as gr

from langchain_community.embeddings.sentence_transformer import (
    SentenceTransformerEmbeddings
)
from langchain_community.vectorstores import Chroma
from huggingface_hub import CommitScheduler
from pathlib import Path

# Create Client
os.environ['GROQ_API_KEY']  = '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';
client = Groq(
    api_key=os.environ.get("GROQ_API_KEY"),
)

chat_completion = client.chat.completions.create(
    messages=[
        {
            "role": "user",
            "content": "Explain the importance of fast language models",
        }
    ],
    model="llama3-8b-8192",
)

# Define the embedding model and the vectorstore
embedding_model = SentenceTransformerEmbeddings(model_name='thenlper/gte-large')

collection_name = 'reports_collection'

vectorstore_persisted = Chroma(
    collection_name=collection_name,
    persist_directory='./reports_db',
    embedding_function=embedding_model
)

# Prepare the logging functionality

log_file = Path("logs/") / f"data_{uuid.uuid4()}.json"
log_folder = log_file.parent

scheduler = CommitScheduler(
    repo_id="reports-qna",
    repo_type="dataset",
    folder_path=log_folder,
    path_in_repo="data",
    every=2
)

# Define the Q&A system message
qna_system_message = """
You are an assistant to a Hospital. Your task is to summarize and provide relevant information to the Medical Diagnosis question based on the provided context.

User input will include the necessary context for you to answer their questions. This context will begin with the token: ###Context.
The context contains references to specific portions of documents relevant to the user's query, along with page number from the report.
The source for the context will begin with the token ###Page

When crafting your response:
1. Select only context relevant to answer the question.
2. Include the source links in your response.
3. User questions will begin with the token: ###Question.
4. If the question is irrelevant or if the context is empty - "Sorry, this is out of my knowledge base"

Please adhere to the following guidelines:
- Your response should only be about the question asked and nothing else.
- Answer only using the context provided.
- Do not mention anything about the context in your final answer.
- If the answer is not found in the context, it is very very important for you to respond with "Sorry, this is out of my knowledge base"
- If NO CONTEXT is provided, it is very important for you to respond with "Sorry, this is out of my knowledge base"

Here is an example of how to structure your response:

Answer:
[Answer]

Sourced from Medical Diagnosis PDF, Page No:
[Page number]

Example:
Answer: Sorry, this is out of my knowledge base if the user query is not relevant to the context.
"""

# Define the user message template
# Create a message template
qna_user_message_template = """
###Context
Here are some documents and their page number that are relevant to the question mentioned below.
{context}

###Question
{question}
"""

# Define the predict function that runs when 'Submit' is clicked or when a API request is made
def predict(user_input):

    filter = "dataset/MedicalDiagnosisManuals/The_Merck_Manual_of_Diagnosis_and_Therapy_2011 - 19th Edn........pdf"
    relevant_document_chunks = vectorstore_persisted.similarity_search(user_input, k=5, filter={"source":filter})
    context_list = [d.page_content + "\n ###This information is taken from the PDF in the Page NO: " + str(d.metadata['page']) + "\n\n " for d in relevant_document_chunks]
    context_for_query = ".".join(context_list) + "this is all thhe context I have"

    prompt = [
        {'role':'system', 'content': qna_system_message},
        {'role': 'user', 'content': qna_user_message_template.format(
            context=context_for_query,
            question=user_input
            )
        }
    ]

    try:
        response = client.chat.completions.create(
            model='llama3-8b-8192',
            messages=prompt,
            temperature=0
        )

        prediction = response.choices[0].message.content

    except Exception as e:
        prediction = str(e)

    # While the prediction is made, log both the inputs and outputs to a local log file
    # While writing to the log file, ensure that the commit scheduler is locked to avoid parallel
    # access

    with scheduler.lock:
        with log_file.open("a") as f:
            f.write(json.dumps(
                {
                    'user_input': user_input,
                    'retrieved_context': context_for_query,
                    'model_response': prediction
                }
            ))
            f.write("\n")

    return prediction

# Set-up the Gradio UI
# Add text box.

textbox = gr.Textbox(placeholder="Enter your query here", lines=6)

# Create the interface
demo = gr.Interface(
    inputs=[textbox], fn=predict, outputs="text",
    title="Medical Report",
    description="This web API presents an interface to ask questions on the medical reports ",
    concurrency_limit=16
)

demo.queue()
demo.launch()