Spaces:
Running
Running
Nikhil SST
commited on
Commit
·
7085a87
1
Parent(s):
2e5c439
Add AI Virtual Therapist application
Browse files- app.py +121 -0
- requirements.txt +11 -0
app.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from fastapi import FastAPI, UploadFile, File, HTTPException
|
3 |
+
import librosa
|
4 |
+
import openai
|
5 |
+
from transformers import pipeline
|
6 |
+
import requests
|
7 |
+
import os
|
8 |
+
from pydantic import BaseModel
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
# Initialize FastAPI
|
12 |
+
app = FastAPI()
|
13 |
+
|
14 |
+
# Initialize emotion classifier
|
15 |
+
text_emotion_classifier = pipeline("text-classification",
|
16 |
+
model="bhadresh-savani/distilbert-base-uncased-emotion",
|
17 |
+
device=-1) # Use CPU
|
18 |
+
|
19 |
+
# Environment variables will be set in Hugging Face Spaces
|
20 |
+
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
21 |
+
ELEVEN_LABS_API_KEY = os.getenv("ELEVEN_LABS_API_KEY")
|
22 |
+
VOICE_ID = os.getenv("VOICE_ID", "9BWtsMINqrJLrRacOk9x")
|
23 |
+
|
24 |
+
def analyze_text_emotion(text):
|
25 |
+
try:
|
26 |
+
emotion_result = text_emotion_classifier(text)
|
27 |
+
emotion_data = emotion_result[0]
|
28 |
+
return f"Emotion: {emotion_data['label']}\nConfidence: {emotion_data['score']:.2f}"
|
29 |
+
except Exception as e:
|
30 |
+
return f"Error: {str(e)}"
|
31 |
+
|
32 |
+
def analyze_voice_emotion(audio):
|
33 |
+
try:
|
34 |
+
# Convert audio to numpy array
|
35 |
+
y = audio[1]
|
36 |
+
sr = audio[0]
|
37 |
+
|
38 |
+
# Extract features
|
39 |
+
pitch = float(librosa.feature.spectral_centroid(y=y, sr=sr).mean())
|
40 |
+
intensity = float(librosa.feature.rms(y=y).mean())
|
41 |
+
tempo, _ = librosa.beat.beat_track(y=y, sr=sr)
|
42 |
+
|
43 |
+
# Simple emotion classification
|
44 |
+
if pitch < 150 and intensity < 0.02:
|
45 |
+
emotion = "sadness"
|
46 |
+
elif pitch > 200 and intensity > 0.05:
|
47 |
+
emotion = "anger"
|
48 |
+
elif pitch > 150 and intensity < 0.03:
|
49 |
+
emotion = "joy"
|
50 |
+
else:
|
51 |
+
emotion = "anxiety"
|
52 |
+
|
53 |
+
return f"Emotion: {emotion}\nPitch: {pitch:.2f}\nIntensity: {intensity:.2f}\nTempo: {tempo:.2f}"
|
54 |
+
except Exception as e:
|
55 |
+
return f"Error: {str(e)}"
|
56 |
+
|
57 |
+
def chat_and_tts(message):
|
58 |
+
try:
|
59 |
+
# Get ChatGPT response
|
60 |
+
openai.api_key = OPENAI_API_KEY
|
61 |
+
chat_response = openai.ChatCompletion.create(
|
62 |
+
model="gpt-3.5-turbo",
|
63 |
+
messages=[
|
64 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
65 |
+
{"role": "user", "content": message},
|
66 |
+
]
|
67 |
+
)
|
68 |
+
response_text = chat_response['choices'][0]['message']['content'].strip()
|
69 |
+
|
70 |
+
# Convert to speech using Eleven Labs
|
71 |
+
url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}"
|
72 |
+
headers = {
|
73 |
+
"xi-api-key": ELEVEN_LABS_API_KEY,
|
74 |
+
"Content-Type": "application/json"
|
75 |
+
}
|
76 |
+
data = {
|
77 |
+
"text": response_text,
|
78 |
+
"voice_settings": {
|
79 |
+
"stability": 0.75,
|
80 |
+
"similarity_boost": 0.75
|
81 |
+
}
|
82 |
+
}
|
83 |
+
response = requests.post(url, json=data, headers=headers)
|
84 |
+
|
85 |
+
if response.status_code != 200:
|
86 |
+
return response_text, None
|
87 |
+
|
88 |
+
# Save audio temporarily
|
89 |
+
audio_path = "response.mp3"
|
90 |
+
with open(audio_path, "wb") as f:
|
91 |
+
f.write(response.content)
|
92 |
+
|
93 |
+
return response_text, audio_path
|
94 |
+
except Exception as e:
|
95 |
+
return f"Error: {str(e)}", None
|
96 |
+
|
97 |
+
# Create Gradio interface
|
98 |
+
with gr.Blocks(title="AI Therapist") as demo:
|
99 |
+
gr.Markdown("# AI Virtual Therapist")
|
100 |
+
|
101 |
+
with gr.Tab("Text Emotion Analysis"):
|
102 |
+
text_input = gr.Textbox(label="Enter text")
|
103 |
+
text_button = gr.Button("Analyze Text Emotion")
|
104 |
+
text_output = gr.Textbox(label="Emotion Analysis Result")
|
105 |
+
text_button.click(analyze_text_emotion, inputs=text_input, outputs=text_output)
|
106 |
+
|
107 |
+
with gr.Tab("Voice Emotion Analysis"):
|
108 |
+
audio_input = gr.Audio(label="Upload Audio", type="numpy")
|
109 |
+
audio_button = gr.Button("Analyze Voice Emotion")
|
110 |
+
audio_output = gr.Textbox(label="Voice Analysis Result")
|
111 |
+
audio_button.click(analyze_voice_emotion, inputs=audio_input, outputs=audio_output)
|
112 |
+
|
113 |
+
with gr.Tab("Chat with TTS"):
|
114 |
+
chat_input = gr.Textbox(label="Enter your message")
|
115 |
+
chat_button = gr.Button("Send Message")
|
116 |
+
chat_output = gr.Textbox(label="Assistant Response")
|
117 |
+
audio_output = gr.Audio(label="Voice Response")
|
118 |
+
chat_button.click(chat_and_tts, inputs=chat_input, outputs=[chat_output, audio_output])
|
119 |
+
|
120 |
+
# Mount Gradio app to FastAPI
|
121 |
+
app = gr.mount_gradio_app(app, demo, path="/")
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
gradio
|
3 |
+
uvicorn
|
4 |
+
python-multipart
|
5 |
+
openai
|
6 |
+
librosa
|
7 |
+
transformers
|
8 |
+
torch
|
9 |
+
requests
|
10 |
+
python-dotenv
|
11 |
+
soundfile
|