Spaces:
Running
on
Zero
Running
on
Zero
Add application file
Browse files- README.md +42 -263
- README_.md +276 -0
README.md
CHANGED
@@ -1,276 +1,55 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
|
5 |
-
|
6 |
-

|
7 |
-

|
8 |
|
9 |
-
##
|
10 |
|
11 |
-
-
|
12 |
-
-
|
13 |
-
-
|
14 |
-
-
|
15 |
-
-
|
16 |
-
-
|
17 |
-
- **Real-time Streaming**: Process audio in real-time as you speak
|
18 |
-
- **Adjustable Sensitivity**: Fine-tune profanity detection threshold
|
19 |
-
- **Visual Highlighting**: Instantly identify problematic words with visual highlighting
|
20 |
-
- **Toxicity Classification**: Automatically categorize content from "No Toxicity" to "Severe Toxicity"
|
21 |
-
- **Performance Optimization**: Half-precision support for improved GPU memory efficiency
|
22 |
|
23 |
-
##
|
24 |
|
25 |
-
|
|
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
2. **Content Refinement**: `s-nlp/t5-paranmt-detox` - A T5-based model for rephrasing offensive language
|
29 |
-
3. **Speech-to-Text**: OpenAI's `Whisper` (large) - For transcribing spoken audio
|
30 |
-
4. **Text-to-Speech**: Microsoft's `SpeechT5` - For converting rephrased text back to audio
|
31 |
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
|
35 |
|
36 |
-
|
37 |
-
- CUDA-compatible GPU recommended (but CPU mode works too)
|
38 |
-
- FFmpeg for audio processing
|
39 |
|
40 |
-
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
# Clone the repository
|
44 |
-
git clone https://github.com/yourusername/profanity-detection.git
|
45 |
-
cd profanity-detection
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
conda create -n profanity-detection python=3.10
|
53 |
-
conda activate profanity-detection
|
54 |
-
|
55 |
-
# Install PyTorch with CUDA support (adjust CUDA version if needed)
|
56 |
-
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
|
57 |
-
|
58 |
-
# Install FFmpeg for audio processing
|
59 |
-
conda install -c conda-forge ffmpeg
|
60 |
-
|
61 |
-
# Install Pillow properly to avoid DLL errors
|
62 |
-
conda install -c conda-forge pillow
|
63 |
-
|
64 |
-
# Install additional dependencies
|
65 |
-
pip install -r requirements.txt
|
66 |
-
|
67 |
-
# Set environment variable to avoid OpenMP conflicts (recommended)
|
68 |
-
conda env config vars set KMP_DUPLICATE_LIB_OK=TRUE
|
69 |
-
conda activate profanity-detection # Re-activate to apply the variable
|
70 |
-
```
|
71 |
-
|
72 |
-
### Option 2: Using Docker
|
73 |
-
|
74 |
-
```bash
|
75 |
-
# Clone the repository
|
76 |
-
git clone https://github.com/yourusername/profanity-detection.git
|
77 |
-
cd profanity-detection
|
78 |
-
|
79 |
-
# Build and run the Docker container
|
80 |
-
docker-compose build --no-cache
|
81 |
-
|
82 |
-
docker-compose up
|
83 |
-
```
|
84 |
-
|
85 |
-
## π Usage
|
86 |
-
|
87 |
-
### Running the Application
|
88 |
-
|
89 |
-
```bash
|
90 |
-
# Set environment variable to avoid OpenMP conflicts (if not set in conda config)
|
91 |
-
# For Windows:
|
92 |
-
set KMP_DUPLICATE_LIB_OK=TRUE
|
93 |
-
|
94 |
-
# For Linux/Mac:
|
95 |
-
export KMP_DUPLICATE_LIB_OK=TRUE
|
96 |
-
|
97 |
-
# Run the application
|
98 |
-
python profanity_detector.py
|
99 |
-
```
|
100 |
-
|
101 |
-
The Gradio interface will be accessible at http://127.0.0.1:7860 in your browser.
|
102 |
-
|
103 |
-
### Using the Interface
|
104 |
-
|
105 |
-
1. **Initialise Models**
|
106 |
-
- Click the "Initialize Models" button when you first open the interface
|
107 |
-
- Wait for all models to load (this may take a few minutes on first run)
|
108 |
-
|
109 |
-
2. **Text Analysis Tab**
|
110 |
-
- Enter text into the text box
|
111 |
-
- Adjust the "Profanity Detection Sensitivity" slider if needed
|
112 |
-
- Click "Analyze Text"
|
113 |
-
- View results including profanity score, toxicity classification, and rephrased content
|
114 |
-
- See highlighted profane words in the text
|
115 |
-
- Listen to the audio version of the rephrased content
|
116 |
-
|
117 |
-
3. **Audio Analysis Tab**
|
118 |
-
- Upload an audio file or record directly using your microphone
|
119 |
-
- Click "Analyze Audio"
|
120 |
-
- View transcription, profanity analysis, and rephrased content
|
121 |
-
- Listen to the cleaned audio version of the rephrased content
|
122 |
-
|
123 |
-
4. **Real-time Streaming Tab**
|
124 |
-
- Click "Start Real-time Processing"
|
125 |
-
- Speak into your microphone
|
126 |
-
- Watch as your speech is transcribed, analyzed, and rephrased in real-time
|
127 |
-
- Listen to the clean audio output
|
128 |
-
- Click "Stop Real-time Processing" when finished
|
129 |
-
|
130 |
-
## π§ Deployment Options
|
131 |
-
|
132 |
-
### Local Deployment with Conda
|
133 |
-
|
134 |
-
For the best development experience with fine-grained control:
|
135 |
-
|
136 |
-
```bash
|
137 |
-
# Create and configure environment
|
138 |
-
conda env create -f environment.yml
|
139 |
-
conda activate llm_project
|
140 |
-
|
141 |
-
# Run with sharing enabled (accessible from other devices)
|
142 |
-
python profanity_detector.py
|
143 |
-
```
|
144 |
-
|
145 |
-
### Docker Deployment (Production)
|
146 |
-
|
147 |
-
For containerised deployment with predictable environment:
|
148 |
-
|
149 |
-
#### Basic CPU Deployment
|
150 |
-
```bash
|
151 |
-
docker-compose up --build
|
152 |
-
```
|
153 |
-
|
154 |
-
#### GPU-Accelerated Deployment
|
155 |
-
```bash
|
156 |
-
# Automatic detection (recommended)
|
157 |
-
docker-compose up --build
|
158 |
-
|
159 |
-
# Or explicitly request GPU mode
|
160 |
-
docker-compose up --build profanity-detector-gpu
|
161 |
-
```
|
162 |
-
|
163 |
-
No need to edit any configuration files - the system will automatically detect and use your GPU if available.
|
164 |
-
|
165 |
-
#### Custom Port Configuration
|
166 |
-
To change the default port (7860):
|
167 |
-
1. Edit docker-compose.yml and change the port mapping (e.g., "8080:7860")
|
168 |
-
2. Run `docker-compose up --build`
|
169 |
-
|
170 |
-
## β οΈ Troubleshooting
|
171 |
-
|
172 |
-
### OpenMP Runtime Conflict
|
173 |
-
|
174 |
-
If you encounter this error:
|
175 |
-
```
|
176 |
-
OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized.
|
177 |
-
```
|
178 |
-
|
179 |
-
**Solutions:**
|
180 |
-
|
181 |
-
1. **Temporary fix**: Set environment variable before running:
|
182 |
-
```bash
|
183 |
-
set KMP_DUPLICATE_LIB_OK=TRUE # Windows
|
184 |
-
export KMP_DUPLICATE_LIB_OK=TRUE # Linux/Mac
|
185 |
-
```
|
186 |
-
|
187 |
-
2. **Code-based fix**: Add to the beginning of your script:
|
188 |
-
```python
|
189 |
-
import os
|
190 |
-
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
|
191 |
-
```
|
192 |
-
|
193 |
-
3. **Permanent fix for Conda environment**:
|
194 |
-
```bash
|
195 |
-
conda env config vars set KMP_DUPLICATE_LIB_OK=TRUE -n profanity-detection
|
196 |
-
conda deactivate
|
197 |
-
conda activate profanity-detection
|
198 |
-
```
|
199 |
-
|
200 |
-
### GPU Memory Issues
|
201 |
-
|
202 |
-
If you encounter CUDA out of memory errors:
|
203 |
-
|
204 |
-
1. Use smaller models:
|
205 |
-
```python
|
206 |
-
# Change Whisper from "large" to "medium" or "small"
|
207 |
-
whisper_model = whisper.load_model("medium").to(device)
|
208 |
-
|
209 |
-
# Keep the TTS model on CPU to save GPU memory
|
210 |
-
tts_model = SpeechT5ForTextToSpeech.from_pretrained(TTS_MODEL) # CPU mode
|
211 |
-
```
|
212 |
-
|
213 |
-
2. Run some models on CPU instead of GPU:
|
214 |
-
```python
|
215 |
-
# Remove .to(device) to keep model on CPU
|
216 |
-
t5_model = AutoModelForSeq2SeqLM.from_pretrained(T5_MODEL) # CPU mode
|
217 |
-
```
|
218 |
-
|
219 |
-
3. Use Docker with specific GPU memory limits:
|
220 |
-
```yaml
|
221 |
-
# In docker-compose.yml
|
222 |
-
deploy:
|
223 |
-
resources:
|
224 |
-
reservations:
|
225 |
-
devices:
|
226 |
-
- driver: nvidia
|
227 |
-
count: 1
|
228 |
-
capabilities: [gpu]
|
229 |
-
options:
|
230 |
-
memory: 4G # Limit to 4GB of GPU memory
|
231 |
-
```
|
232 |
-
|
233 |
-
### Docker-Specific Issues
|
234 |
-
|
235 |
-
1. **Permission issues with mounted volumes**:
|
236 |
-
```bash
|
237 |
-
# Fix permissions (Linux/Mac)
|
238 |
-
sudo chown -R $USER:$USER .
|
239 |
-
```
|
240 |
-
|
241 |
-
2. **No GPU access in container**:
|
242 |
-
- Verify NVIDIA Container Toolkit installation
|
243 |
-
- Check GPU driver compatibility
|
244 |
-
- Run `nvidia-smi` on the host to confirm GPU availability
|
245 |
-
|
246 |
-
### First-Time Slowness
|
247 |
-
|
248 |
-
When first run, the application downloads all models, which may take time. Subsequent runs will be faster as models are cached locally. The text-to-speech model requires additional download time on first use.
|
249 |
-
|
250 |
-
## π Project Structure
|
251 |
-
|
252 |
-
```
|
253 |
-
profanity-detection/
|
254 |
-
βββ profanity_detector.py # Main application file
|
255 |
-
βββ Dockerfile # For containerised deployment
|
256 |
-
βββ docker-compose.yml # Container orchestration
|
257 |
-
βββ requirements.txt # Python dependencies
|
258 |
-
βββ environment.yml # Conda environment specification
|
259 |
-
βββ README.md # This file
|
260 |
-
```
|
261 |
-
|
262 |
-
## π References
|
263 |
-
|
264 |
-
- [HuggingFace Transformers](https://huggingface.co/docs/transformers/index)
|
265 |
-
- [OpenAI Whisper](https://github.com/openai/whisper)
|
266 |
-
- [Microsoft SpeechT5](https://huggingface.co/microsoft/speecht5_tts)
|
267 |
-
- [Gradio Documentation](https://gradio.app/docs/)
|
268 |
-
|
269 |
-
## π License
|
270 |
-
|
271 |
-
This project is licensed under the MIT License - see the LICENSE file for details.
|
272 |
-
|
273 |
-
## π Acknowledgments
|
274 |
-
|
275 |
-
- This project utilises models from HuggingFace Hub, Microsoft, and OpenAI
|
276 |
-
- Inspired by research in content moderation and responsible AI
|
|
|
1 |
+
---
|
2 |
+
title: Profanity Detection & Replacement System
|
3 |
+
emoji: π«
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: blue
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 4.14.0
|
8 |
+
app_file: profanity_detector.py
|
9 |
+
pinned: false
|
10 |
+
---
|
11 |
|
12 |
+
# Profanity Detection & Replacement System
|
13 |
|
14 |
+
This app provides a comprehensive solution for detecting and cleaning profanity from both text and audio content. It uses state-of-the-art machine learning models to analyze content, identify inappropriate language, and generate clean alternatives.
|
|
|
|
|
15 |
|
16 |
+
## Features
|
17 |
|
18 |
+
- π Real-time profanity detection with adjustable sensitivity
|
19 |
+
- π Automatic text rephrasing to clean alternatives
|
20 |
+
- π€ Speech-to-text conversion with profanity filtering
|
21 |
+
- π£οΈ Text-to-speech generation for clean content
|
22 |
+
- π» User-friendly Gradio interface
|
23 |
+
- π Real-time streaming support for live audio processing
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
## Models Used
|
26 |
|
27 |
+
- Profanity Detection: `parsawar/profanity_model_3.1`
|
28 |
+
- Text Detoxification: `s-nlp/t5-paranmt-detox`
|
29 |
+
- Speech Recognition: OpenAI Whisper (large)
|
30 |
+
- Text-to-Speech: Microsoft SpeechT5
|
31 |
|
32 |
+
## Requirements
|
|
|
|
|
|
|
33 |
|
34 |
+
- Python 3.10
|
35 |
+
- PyTorch with CUDA support
|
36 |
+
- Gradio
|
37 |
+
- Transformers
|
38 |
+
- OpenAI Whisper
|
39 |
+
- Other dependencies listed in `requirements.txt`
|
40 |
|
41 |
+
## Interface
|
42 |
|
43 |
+
The app provides three main interaction modes:
|
|
|
|
|
44 |
|
45 |
+
1. **Text Analysis**: Enter text to detect and clean profanity
|
46 |
+
2. **Audio Analysis**: Upload or record audio for profanity detection
|
47 |
+
3. **Real-time Streaming**: Process live audio with instant profanity filtering
|
48 |
|
49 |
+
## Technical Details
|
|
|
|
|
|
|
50 |
|
51 |
+
- GPU acceleration supported for faster processing
|
52 |
+
- Memory-optimized with FP16 precision where available
|
53 |
+
- Configurable profanity detection threshold
|
54 |
+
- Built-in error handling and logging
|
55 |
+
- Dark mode support
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README_.md
ADDED
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Profanity Detection in Speech and Text
|
2 |
+
|
3 |
+
A robust multimodal system for detecting and rephrasing profanity in both speech and text, leveraging advanced NLP models to ensure accurate filtering while preserving conversational context.
|
4 |
+
|
5 |
+

|
6 |
+

|
7 |
+

|
8 |
+
|
9 |
+
## π Features
|
10 |
+
|
11 |
+
- **Multimodal Analysis**: Process both written text and spoken audio
|
12 |
+
- **Context-Aware Detection**: Goes beyond simple keyword matching
|
13 |
+
- **Automatic Content Refinement**: Intelligently rephrases content while preserving meaning
|
14 |
+
- **Audio Synthesis**: Converts rephrased content into high-quality spoken audio
|
15 |
+
- **Classification System**: Categorises content by toxicity levels
|
16 |
+
- **User-Friendly Interface**: Intuitive Gradio-based UI
|
17 |
+
- **Real-time Streaming**: Process audio in real-time as you speak
|
18 |
+
- **Adjustable Sensitivity**: Fine-tune profanity detection threshold
|
19 |
+
- **Visual Highlighting**: Instantly identify problematic words with visual highlighting
|
20 |
+
- **Toxicity Classification**: Automatically categorize content from "No Toxicity" to "Severe Toxicity"
|
21 |
+
- **Performance Optimization**: Half-precision support for improved GPU memory efficiency
|
22 |
+
|
23 |
+
## π§ Models Used
|
24 |
+
|
25 |
+
The system leverages four powerful models:
|
26 |
+
|
27 |
+
1. **Profanity Detection**: `parsawar/profanity_model_3.1` - A RoBERTa-based model trained for offensive language detection
|
28 |
+
2. **Content Refinement**: `s-nlp/t5-paranmt-detox` - A T5-based model for rephrasing offensive language
|
29 |
+
3. **Speech-to-Text**: OpenAI's `Whisper` (large) - For transcribing spoken audio
|
30 |
+
4. **Text-to-Speech**: Microsoft's `SpeechT5` - For converting rephrased text back to audio
|
31 |
+
|
32 |
+
## π§ Installation
|
33 |
+
|
34 |
+
### Prerequisites
|
35 |
+
|
36 |
+
- Python 3.10+
|
37 |
+
- CUDA-compatible GPU recommended (but CPU mode works too)
|
38 |
+
- FFmpeg for audio processing
|
39 |
+
|
40 |
+
### Option 1: Using Conda (Recommended for Local Development)
|
41 |
+
|
42 |
+
```bash
|
43 |
+
# Clone the repository
|
44 |
+
git clone https://github.com/yourusername/profanity-detection.git
|
45 |
+
cd profanity-detection
|
46 |
+
|
47 |
+
# Method A: Create environment from environment.yml (recommended)
|
48 |
+
conda env create -f environment.yml
|
49 |
+
conda activate llm_project
|
50 |
+
|
51 |
+
# Method B: Create a new conda environment manually
|
52 |
+
conda create -n profanity-detection python=3.10
|
53 |
+
conda activate profanity-detection
|
54 |
+
|
55 |
+
# Install PyTorch with CUDA support (adjust CUDA version if needed)
|
56 |
+
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
|
57 |
+
|
58 |
+
# Install FFmpeg for audio processing
|
59 |
+
conda install -c conda-forge ffmpeg
|
60 |
+
|
61 |
+
# Install Pillow properly to avoid DLL errors
|
62 |
+
conda install -c conda-forge pillow
|
63 |
+
|
64 |
+
# Install additional dependencies
|
65 |
+
pip install -r requirements.txt
|
66 |
+
|
67 |
+
# Set environment variable to avoid OpenMP conflicts (recommended)
|
68 |
+
conda env config vars set KMP_DUPLICATE_LIB_OK=TRUE
|
69 |
+
conda activate profanity-detection # Re-activate to apply the variable
|
70 |
+
```
|
71 |
+
|
72 |
+
### Option 2: Using Docker
|
73 |
+
|
74 |
+
```bash
|
75 |
+
# Clone the repository
|
76 |
+
git clone https://github.com/yourusername/profanity-detection.git
|
77 |
+
cd profanity-detection
|
78 |
+
|
79 |
+
# Build and run the Docker container
|
80 |
+
docker-compose build --no-cache
|
81 |
+
|
82 |
+
docker-compose up
|
83 |
+
```
|
84 |
+
|
85 |
+
## π Usage
|
86 |
+
|
87 |
+
### Running the Application
|
88 |
+
|
89 |
+
```bash
|
90 |
+
# Set environment variable to avoid OpenMP conflicts (if not set in conda config)
|
91 |
+
# For Windows:
|
92 |
+
set KMP_DUPLICATE_LIB_OK=TRUE
|
93 |
+
|
94 |
+
# For Linux/Mac:
|
95 |
+
export KMP_DUPLICATE_LIB_OK=TRUE
|
96 |
+
|
97 |
+
# Run the application
|
98 |
+
python profanity_detector.py
|
99 |
+
```
|
100 |
+
|
101 |
+
The Gradio interface will be accessible at http://127.0.0.1:7860 in your browser.
|
102 |
+
|
103 |
+
### Using the Interface
|
104 |
+
|
105 |
+
1. **Initialise Models**
|
106 |
+
- Click the "Initialize Models" button when you first open the interface
|
107 |
+
- Wait for all models to load (this may take a few minutes on first run)
|
108 |
+
|
109 |
+
2. **Text Analysis Tab**
|
110 |
+
- Enter text into the text box
|
111 |
+
- Adjust the "Profanity Detection Sensitivity" slider if needed
|
112 |
+
- Click "Analyze Text"
|
113 |
+
- View results including profanity score, toxicity classification, and rephrased content
|
114 |
+
- See highlighted profane words in the text
|
115 |
+
- Listen to the audio version of the rephrased content
|
116 |
+
|
117 |
+
3. **Audio Analysis Tab**
|
118 |
+
- Upload an audio file or record directly using your microphone
|
119 |
+
- Click "Analyze Audio"
|
120 |
+
- View transcription, profanity analysis, and rephrased content
|
121 |
+
- Listen to the cleaned audio version of the rephrased content
|
122 |
+
|
123 |
+
4. **Real-time Streaming Tab**
|
124 |
+
- Click "Start Real-time Processing"
|
125 |
+
- Speak into your microphone
|
126 |
+
- Watch as your speech is transcribed, analyzed, and rephrased in real-time
|
127 |
+
- Listen to the clean audio output
|
128 |
+
- Click "Stop Real-time Processing" when finished
|
129 |
+
|
130 |
+
## π§ Deployment Options
|
131 |
+
|
132 |
+
### Local Deployment with Conda
|
133 |
+
|
134 |
+
For the best development experience with fine-grained control:
|
135 |
+
|
136 |
+
```bash
|
137 |
+
# Create and configure environment
|
138 |
+
conda env create -f environment.yml
|
139 |
+
conda activate llm_project
|
140 |
+
|
141 |
+
# Run with sharing enabled (accessible from other devices)
|
142 |
+
python profanity_detector.py
|
143 |
+
```
|
144 |
+
|
145 |
+
### Docker Deployment (Production)
|
146 |
+
|
147 |
+
For containerised deployment with predictable environment:
|
148 |
+
|
149 |
+
#### Basic CPU Deployment
|
150 |
+
```bash
|
151 |
+
docker-compose up --build
|
152 |
+
```
|
153 |
+
|
154 |
+
#### GPU-Accelerated Deployment
|
155 |
+
```bash
|
156 |
+
# Automatic detection (recommended)
|
157 |
+
docker-compose up --build
|
158 |
+
|
159 |
+
# Or explicitly request GPU mode
|
160 |
+
docker-compose up --build profanity-detector-gpu
|
161 |
+
```
|
162 |
+
|
163 |
+
No need to edit any configuration files - the system will automatically detect and use your GPU if available.
|
164 |
+
|
165 |
+
#### Custom Port Configuration
|
166 |
+
To change the default port (7860):
|
167 |
+
1. Edit docker-compose.yml and change the port mapping (e.g., "8080:7860")
|
168 |
+
2. Run `docker-compose up --build`
|
169 |
+
|
170 |
+
## β οΈ Troubleshooting
|
171 |
+
|
172 |
+
### OpenMP Runtime Conflict
|
173 |
+
|
174 |
+
If you encounter this error:
|
175 |
+
```
|
176 |
+
OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized.
|
177 |
+
```
|
178 |
+
|
179 |
+
**Solutions:**
|
180 |
+
|
181 |
+
1. **Temporary fix**: Set environment variable before running:
|
182 |
+
```bash
|
183 |
+
set KMP_DUPLICATE_LIB_OK=TRUE # Windows
|
184 |
+
export KMP_DUPLICATE_LIB_OK=TRUE # Linux/Mac
|
185 |
+
```
|
186 |
+
|
187 |
+
2. **Code-based fix**: Add to the beginning of your script:
|
188 |
+
```python
|
189 |
+
import os
|
190 |
+
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
|
191 |
+
```
|
192 |
+
|
193 |
+
3. **Permanent fix for Conda environment**:
|
194 |
+
```bash
|
195 |
+
conda env config vars set KMP_DUPLICATE_LIB_OK=TRUE -n profanity-detection
|
196 |
+
conda deactivate
|
197 |
+
conda activate profanity-detection
|
198 |
+
```
|
199 |
+
|
200 |
+
### GPU Memory Issues
|
201 |
+
|
202 |
+
If you encounter CUDA out of memory errors:
|
203 |
+
|
204 |
+
1. Use smaller models:
|
205 |
+
```python
|
206 |
+
# Change Whisper from "large" to "medium" or "small"
|
207 |
+
whisper_model = whisper.load_model("medium").to(device)
|
208 |
+
|
209 |
+
# Keep the TTS model on CPU to save GPU memory
|
210 |
+
tts_model = SpeechT5ForTextToSpeech.from_pretrained(TTS_MODEL) # CPU mode
|
211 |
+
```
|
212 |
+
|
213 |
+
2. Run some models on CPU instead of GPU:
|
214 |
+
```python
|
215 |
+
# Remove .to(device) to keep model on CPU
|
216 |
+
t5_model = AutoModelForSeq2SeqLM.from_pretrained(T5_MODEL) # CPU mode
|
217 |
+
```
|
218 |
+
|
219 |
+
3. Use Docker with specific GPU memory limits:
|
220 |
+
```yaml
|
221 |
+
# In docker-compose.yml
|
222 |
+
deploy:
|
223 |
+
resources:
|
224 |
+
reservations:
|
225 |
+
devices:
|
226 |
+
- driver: nvidia
|
227 |
+
count: 1
|
228 |
+
capabilities: [gpu]
|
229 |
+
options:
|
230 |
+
memory: 4G # Limit to 4GB of GPU memory
|
231 |
+
```
|
232 |
+
|
233 |
+
### Docker-Specific Issues
|
234 |
+
|
235 |
+
1. **Permission issues with mounted volumes**:
|
236 |
+
```bash
|
237 |
+
# Fix permissions (Linux/Mac)
|
238 |
+
sudo chown -R $USER:$USER .
|
239 |
+
```
|
240 |
+
|
241 |
+
2. **No GPU access in container**:
|
242 |
+
- Verify NVIDIA Container Toolkit installation
|
243 |
+
- Check GPU driver compatibility
|
244 |
+
- Run `nvidia-smi` on the host to confirm GPU availability
|
245 |
+
|
246 |
+
### First-Time Slowness
|
247 |
+
|
248 |
+
When first run, the application downloads all models, which may take time. Subsequent runs will be faster as models are cached locally. The text-to-speech model requires additional download time on first use.
|
249 |
+
|
250 |
+
## π Project Structure
|
251 |
+
|
252 |
+
```
|
253 |
+
profanity-detection/
|
254 |
+
βββ profanity_detector.py # Main application file
|
255 |
+
βββ Dockerfile # For containerised deployment
|
256 |
+
βββ docker-compose.yml # Container orchestration
|
257 |
+
βββ requirements.txt # Python dependencies
|
258 |
+
βββ environment.yml # Conda environment specification
|
259 |
+
βββ README.md # This file
|
260 |
+
```
|
261 |
+
|
262 |
+
## π References
|
263 |
+
|
264 |
+
- [HuggingFace Transformers](https://huggingface.co/docs/transformers/index)
|
265 |
+
- [OpenAI Whisper](https://github.com/openai/whisper)
|
266 |
+
- [Microsoft SpeechT5](https://huggingface.co/microsoft/speecht5_tts)
|
267 |
+
- [Gradio Documentation](https://gradio.app/docs/)
|
268 |
+
|
269 |
+
## π License
|
270 |
+
|
271 |
+
This project is licensed under the MIT License - see the LICENSE file for details.
|
272 |
+
|
273 |
+
## π Acknowledgments
|
274 |
+
|
275 |
+
- This project utilises models from HuggingFace Hub, Microsoft, and OpenAI
|
276 |
+
- Inspired by research in content moderation and responsible AI
|