nielsr's picture
nielsr HF Staff
Add example image
f3e91bc
raw
history blame
1.28 kB
import gradio as gr
from transformers import ImageClassificationPipeline, PerceiverForImageClassificationConvProcessing, PerceiverFeatureExtractor
import torch
torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg')
feature_extractor = PerceiverFeatureExtractor()
model = PerceiverForImageClassificationConvProcessing.from_pretrained("deepmind/vision-perceiver-conv")
# define custom pipeline as Perceiver expects "inputs" rather than "pixel_values"
class CustomPipeline(ImageClassificationPipeline):
def _forward(self, model_inputs):
inputs = model_inputs["pixel_values"]
model_outputs = self.model(inputs=inputs)
return model_outputs
image_pipe = CustomPipeline(model=model, feature_extractor=feature_extractor)
def classify_image(image):
results = image_pipe(image)
# convert to format Gradio expects
output = {}
for prediction in results:
predicted_label = prediction['label']
score = prediction['score']
output[predicted_label] = score
return output
image = gr.inputs.Image(type="pil")
label = gr.outputs.Label(num_top_classes=5)
examples = [["cats.jpg"]]
gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples, enable_queue=True).launch(debug=True)