Nikita Pogadaev
commited on
Commit
·
c2c8638
1
Parent(s):
6da6312
adding model runner, first commit
Browse files- app.py +174 -0
- model_info/label_to_theme.json +1 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
import json
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from transformers import (
|
8 |
+
DebertaV2Config,
|
9 |
+
DebertaV2Model,
|
10 |
+
DebertaV2Tokenizer,
|
11 |
+
)
|
12 |
+
|
13 |
+
model_name = "microsoft/deberta-v3-base"
|
14 |
+
tokenizer = DebertaV2Tokenizer.from_pretrained(model_name)
|
15 |
+
|
16 |
+
def preprocess_text(text, tokenizer, max_length=512):
|
17 |
+
inputs = tokenizer(
|
18 |
+
text,
|
19 |
+
padding="max_length",
|
20 |
+
truncation=True,
|
21 |
+
max_length=max_length,
|
22 |
+
return_tensors="pt"
|
23 |
+
)
|
24 |
+
return inputs
|
25 |
+
|
26 |
+
|
27 |
+
def classify_text(text, model, tokenizer, device, threshold=0.5):
|
28 |
+
inputs = preprocess_text(text, tokenizer)
|
29 |
+
input_ids = inputs["input_ids"].to(device)
|
30 |
+
attention_mask = inputs["attention_mask"].to(device)
|
31 |
+
model.eval()
|
32 |
+
with torch.no_grad():
|
33 |
+
logits = model(input_ids, attention_mask)
|
34 |
+
probs = torch.sigmoid(logits)
|
35 |
+
predictions = (probs > threshold).int().numpy()
|
36 |
+
|
37 |
+
return probs.numpy(), predictions
|
38 |
+
|
39 |
+
def get_themes(text, model, tokenizer, label_to_theme, device, limit=5):
|
40 |
+
probabilities, _ = classify_text(text, model, tokenizer, device)
|
41 |
+
probabilities = probabilities / probabilities.sum()
|
42 |
+
themes = []
|
43 |
+
for label in probabilities[0].argsort()[-limit:]:
|
44 |
+
themes.append((label_to_theme[str(label)], probabilities[0][label]))
|
45 |
+
return themes
|
46 |
+
|
47 |
+
class DebertPaperClassifier(torch.nn.Module):
|
48 |
+
def __init__(self, num_labels, device, dropout_rate=0.1, class_weights=None):
|
49 |
+
super().__init__()
|
50 |
+
self.config = DebertaV2Config.from_pretrained(model_name)
|
51 |
+
self.deberta = DebertaV2Model.from_pretrained(model_name, config=self.config)
|
52 |
+
|
53 |
+
self.classifier = torch.nn.Sequential(
|
54 |
+
torch.nn.Dropout(dropout_rate),
|
55 |
+
torch.nn.Linear(self.config.hidden_size, 512),
|
56 |
+
torch.nn.LayerNorm(512),
|
57 |
+
torch.nn.GELU(),
|
58 |
+
torch.nn.Dropout(dropout_rate),
|
59 |
+
torch.nn.Linear(512, num_labels)
|
60 |
+
)
|
61 |
+
|
62 |
+
self._init_weights()
|
63 |
+
if class_weights is not None:
|
64 |
+
self.loss_fct = torch.nn.BCEWithLogitsLoss(weight=class_weights.to(device))
|
65 |
+
else:
|
66 |
+
self.loss_fct = torch.nn.BCEWithLogitsLoss()
|
67 |
+
|
68 |
+
class DebertPaperClassifierV5(torch.nn.Module):
|
69 |
+
def __init__(self, device, num_labels=47, dropout_rate=0.1, class_weights=None):
|
70 |
+
super().__init__()
|
71 |
+
self.config = DebertaV2Config.from_pretrained("microsoft/deberta-v3-base")
|
72 |
+
self.deberta = DebertaV2Model.from_pretrained("microsoft/deberta-v3-base", config=self.config)
|
73 |
+
|
74 |
+
self.classifier = torch.nn.Sequential(
|
75 |
+
torch.nn.Dropout(dropout_rate),
|
76 |
+
torch.nn.Linear(self.config.hidden_size, 512),
|
77 |
+
torch.nn.LayerNorm(512),
|
78 |
+
torch.nn.GELU(),
|
79 |
+
torch.nn.Dropout(dropout_rate),
|
80 |
+
torch.nn.Linear(512, num_labels)
|
81 |
+
)
|
82 |
+
|
83 |
+
if class_weights is not None:
|
84 |
+
self.loss_fct = torch.nn.BCEWithLogitsLoss(weight=class_weights.to(device))
|
85 |
+
else:
|
86 |
+
self.loss_fct = torch.nn.BCEWithLogitsLoss()
|
87 |
+
|
88 |
+
def forward(self, input_ids, attention_mask, labels=None):
|
89 |
+
outputs = self.deberta(
|
90 |
+
input_ids=input_ids,
|
91 |
+
attention_mask=attention_mask
|
92 |
+
)
|
93 |
+
logits = self.classifier(outputs.last_hidden_state[:, 0, :])
|
94 |
+
loss = None
|
95 |
+
if labels is not None:
|
96 |
+
loss = self.loss_fct(logits, labels)
|
97 |
+
return (loss, logits) if loss is not None else logits
|
98 |
+
|
99 |
+
def _init_weights(self):
|
100 |
+
for module in self.classifier.modules():
|
101 |
+
if isinstance(module, torch.nn.Linear):
|
102 |
+
module.weight.data.normal_(mean=0.0, std=0.02)
|
103 |
+
if module.bias is not None:
|
104 |
+
module.bias.data.zero_()
|
105 |
+
|
106 |
+
def forward(self,
|
107 |
+
input_ids,
|
108 |
+
attention_mask,
|
109 |
+
labels=None,
|
110 |
+
):
|
111 |
+
outputs = self.deberta(
|
112 |
+
input_ids=input_ids,
|
113 |
+
attention_mask=attention_mask
|
114 |
+
)
|
115 |
+
|
116 |
+
cls_output = outputs.last_hidden_state[:, 0, :]
|
117 |
+
logits = self.classifier(cls_output)
|
118 |
+
|
119 |
+
loss = None
|
120 |
+
if labels is not None:
|
121 |
+
loss = self.loss_fct(logits, labels)
|
122 |
+
|
123 |
+
return (loss, logits) if loss is not None else logits
|
124 |
+
|
125 |
+
@st.cache_resource
|
126 |
+
def load_model():
|
127 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
128 |
+
with open('model_info/label_to_theme.json', 'r') as f:
|
129 |
+
label_to_theme = json.load(f)
|
130 |
+
|
131 |
+
model = DebertPaperClassifierV5(device=device, num_labels=len(label_to_theme)).to(device)
|
132 |
+
model.load_state_dict(torch.load("model_info/deberta_v3.pth", map_location=device))
|
133 |
+
return model, tokenizer, label_to_theme, device
|
134 |
+
|
135 |
+
def kek():
|
136 |
+
st.title("arXiv Paper Classifier")
|
137 |
+
st.markdown("""
|
138 |
+
<style>
|
139 |
+
.image-row {
|
140 |
+
display: flex;
|
141 |
+
flex-direction: row;
|
142 |
+
gap: 10px;
|
143 |
+
}
|
144 |
+
</style>
|
145 |
+
|
146 |
+
<div class="image-row">
|
147 |
+
<img width=100px src='https://storage.yandexcloud.net/lms-vault/media/cache/c9/a7/c9a754ba1b2bb5b34e1f178d4ec26f24.jpg'>
|
148 |
+
<img width=300px src='https://pic.rutubelist.ru/video/ba/b6/bab6ab515c15837e28eb6c99df192cae.jpg'>
|
149 |
+
</div>
|
150 |
+
""", unsafe_allow_html=True)
|
151 |
+
st.write("write the title or abstract to classify topic theme")
|
152 |
+
|
153 |
+
title = st.text_input("title")
|
154 |
+
abstract = st.text_area("abstract")
|
155 |
+
lim = int(st.number_input("top ? themes"))
|
156 |
+
|
157 |
+
if st.button("CLASSIFY"):
|
158 |
+
if not title and not abstract:
|
159 |
+
st.warning("empty abstract!!!")
|
160 |
+
return
|
161 |
+
|
162 |
+
text = f"{title}\n\n{abstract}" if title and abstract else title or abstract
|
163 |
+
model, tokenizer, label_to_theme, device = load_model()
|
164 |
+
|
165 |
+
with st.spinner("classifying..."):
|
166 |
+
themes = get_themes(text, model, tokenizer, label_to_theme, device, lim)
|
167 |
+
co = 0
|
168 |
+
st.success(f"top {int(lim)} results:")
|
169 |
+
for th, pr in themes:
|
170 |
+
st.write(f"{lim - co}. - {th}: {pr:.1%}")
|
171 |
+
co += 1
|
172 |
+
|
173 |
+
if __name__ == "__main__":
|
174 |
+
kek()
|
model_info/label_to_theme.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"0": "cs.AI", "1": "physics.soc-ph", "2": "stat.ML", "3": "cs.CE", "4": "cs.DB", "5": "cs.CL", "6": "cs.NA", "7": "cs.CY", "8": "cs.GT", "9": "cs.SI", "10": "stat.AP", "11": "cs.DL", "12": "math.ST", "13": "nlin.AO", "14": "cs.LO", "15": "cs.MM", "16": "cond-mat.dis-nn", "17": "cs.DM", "18": "cs.CC", "19": "stat.CO", "20": "cs.DC", "21": "cs.IT", "22": "cs.DS", "23": "cs.SY", "24": "q-bio.QM", "25": "cs.PL", "26": "cs.RO", "27": "cs.NE", "28": "cs.CR", "29": "cs.MA", "30": "q-bio.NC", "31": "cs.LG", "32": "cs.GR", "33": "physics.data-an", "34": "quant-ph", "35": "cs.IR", "36": "math.NA", "37": "math.PR", "38": "stat.ME", "39": "cs.SE", "40": "math.OC", "41": "math.IT", "42": "cs.HC", "43": "stat.TH", "44": "cs.NI", "45": "cs.CV", "46": "cs.SD"}
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
torch
|
3 |
+
transformers
|
4 |
+
numpy
|
5 |
+
sentencepiece
|