Niklas Hoepner
commited on
Commit
·
e130a6a
1
Parent(s):
21ab6f3
Implemened L3Score from SPIQA datase paper
Browse files- L3Score.py +255 -0
- README.md +145 -28
- app.py +1 -1
- l3score.py +0 -95
- requirements.txt +7 -1
L3Score.py
ADDED
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
"""
|
16 |
+
L3Score metric to score the quality of a free-form answer given a question and a ground-truth answer.
|
17 |
+
The metric is based on the log-probability of the Yes/No token of an LLM judge.
|
18 |
+
Metric is based on the paper: https://arxiv.org/pdf/2407.09413
|
19 |
+
"""
|
20 |
+
|
21 |
+
import os
|
22 |
+
|
23 |
+
import evaluate
|
24 |
+
import datasets
|
25 |
+
import numpy as np
|
26 |
+
|
27 |
+
from langchain.chat_models.base import init_chat_model
|
28 |
+
|
29 |
+
|
30 |
+
_CITATION = """\
|
31 |
+
@article{pramanick2024spiqa,
|
32 |
+
title={Spiqa: A dataset for multimodal question answering on scientific papers},
|
33 |
+
author={Pramanick, Shraman and Chellappa, Rama and Venugopalan, Subhashini},
|
34 |
+
journal={arXiv preprint arXiv:2407.09413},
|
35 |
+
year={2024}
|
36 |
+
}
|
37 |
+
"""
|
38 |
+
|
39 |
+
_DESCRIPTION = """\
|
40 |
+
Implements the L3Score metric to score the quality of a free-form answer given a question and a ground-truth answer.
|
41 |
+
The metric is based on the log-probability of the Yes/No token of an LLM judge.
|
42 |
+
Metric is based on the paper: https://arxiv.org/pdf/2407.09413
|
43 |
+
"""
|
44 |
+
|
45 |
+
|
46 |
+
_KWARGS_DESCRIPTION = """
|
47 |
+
Implements the L3Score metric to score the quality of a free-form answer given a question and a ground-truth answer.
|
48 |
+
Args:
|
49 |
+
questions: list of questions to score. Each question should be a string.
|
50 |
+
predictions: list of predictions to score. Each predictions
|
51 |
+
should be a string.
|
52 |
+
references: list of reference for each prediction. Each
|
53 |
+
reference should be a string.
|
54 |
+
Returns:
|
55 |
+
L3Score: mean L3Score for all (question, prediction, reference) triplets.
|
56 |
+
Examples:
|
57 |
+
Example 1: High certainty the prediction is the same as the ground-truth.
|
58 |
+
>>> L3Score = evaluate.load("L3Score")
|
59 |
+
>>> L3Score.compute(questions=["What is the capital of France?"], predictions=["Paris"], references=["Paris"], api_key="your-openai-api-key", provider="openai", model="gpt-4o-mini")
|
60 |
+
{'L3Score': 0.99...}
|
61 |
+
|
62 |
+
Example 2: High certainty the prediction is not the same as the ground-truth.
|
63 |
+
>>> L3Score = evaluate.load("L3Score")
|
64 |
+
>>> L3Score.compute(questions=["What is the capital of Germany?"], predictions=["Moscow"], references=["Berlin"], api_key="your-openai-api-key", provider="openai", model="gpt-4o-mini")
|
65 |
+
{'L3Score': 0.00...}
|
66 |
+
"""
|
67 |
+
|
68 |
+
|
69 |
+
PROVIDER_WITH_TOP_LOGPROBS = ["openai", "deepseek", "xai"]
|
70 |
+
|
71 |
+
_PROMPT = "You are given a question, ground-truth answer, and a candidate answer. Question: {question} \nGround-truth answer: {gt} \nCandidate answer: {answer} \n\
|
72 |
+
Is the semantic meaning of the ground-truth and candidate answers similar? Answer in one word - Yes or No."
|
73 |
+
|
74 |
+
_SUFFIXES_TO_SCORE = [" yes", " yeah"]
|
75 |
+
_COMPLEMENT_SUFFIXES = [" no"]
|
76 |
+
|
77 |
+
NEGATIVE_INF = -1000.0
|
78 |
+
|
79 |
+
|
80 |
+
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
81 |
+
class L3Score(evaluate.Metric):
|
82 |
+
"""
|
83 |
+
L3Score metric to score the quality of a free-form answer given a question and a ground-truth answer.
|
84 |
+
The metric is based on the log-probability of the Yes/No token of an LLM judge.
|
85 |
+
Metric is from the paper: https://arxiv.org/pdf/2407.09413
|
86 |
+
"""
|
87 |
+
|
88 |
+
def _info(self):
|
89 |
+
return evaluate.MetricInfo(
|
90 |
+
module_type="metric",
|
91 |
+
description=_DESCRIPTION,
|
92 |
+
citation=_CITATION,
|
93 |
+
inputs_description=_KWARGS_DESCRIPTION,
|
94 |
+
features=datasets.Features(
|
95 |
+
{
|
96 |
+
"questions": datasets.Value("string"),
|
97 |
+
"predictions": datasets.Value("string"),
|
98 |
+
"references": datasets.Value("string"),
|
99 |
+
}
|
100 |
+
),
|
101 |
+
homepage="https://github.com/google/spiqa",
|
102 |
+
codebase_urls=[
|
103 |
+
"https://github.com/google/spiqa/blob/main/metrics/llmlogscore/llmlogscore.py"
|
104 |
+
],
|
105 |
+
reference_urls=["https://arxiv.org/pdf/2407.09413","https://github.com/google/spiqa","https://huggingface.co/datasets/google/spiqa"],
|
106 |
+
)
|
107 |
+
|
108 |
+
def _download_and_prepare(self, dl_manager):
|
109 |
+
"""Optional: download external resources useful to compute the scores"""
|
110 |
+
pass
|
111 |
+
|
112 |
+
def _verify_input(self, provider, model, api_key):
|
113 |
+
"""Verify the input parameters"""
|
114 |
+
|
115 |
+
print(provider)
|
116 |
+
if provider not in PROVIDER_WITH_TOP_LOGPROBS:
|
117 |
+
raise ValueError(
|
118 |
+
"Provider must offer top_logprobs to use this metric, pick from {}".format(
|
119 |
+
PROVIDER_WITH_TOP_LOGPROBS
|
120 |
+
)
|
121 |
+
)
|
122 |
+
|
123 |
+
if api_key == "":
|
124 |
+
raise ValueError("api_key is required")
|
125 |
+
|
126 |
+
def _get_llm(self, model, api_key):
|
127 |
+
"""Get the LLM"""
|
128 |
+
llm = init_chat_model(model=model, api_key=api_key)
|
129 |
+
llm = llm.bind(logprobs=True, top_logprobs=5)
|
130 |
+
return llm
|
131 |
+
|
132 |
+
def _compute(
|
133 |
+
self,
|
134 |
+
questions,
|
135 |
+
predictions,
|
136 |
+
references,
|
137 |
+
api_key="",
|
138 |
+
provider="openai",
|
139 |
+
model="gpt-4o-mini",
|
140 |
+
):
|
141 |
+
"""Returns the scores"""
|
142 |
+
|
143 |
+
# Check whether llm can be initialized
|
144 |
+
self._verify_input(provider, model, api_key)
|
145 |
+
|
146 |
+
# Initialize the LLM
|
147 |
+
llm = self._get_llm(model, api_key)
|
148 |
+
|
149 |
+
L3Score = 0
|
150 |
+
count = 0
|
151 |
+
for question, prediction, reference in zip(questions, predictions, references):
|
152 |
+
response = llm.invoke(
|
153 |
+
(
|
154 |
+
"human",
|
155 |
+
_PROMPT.format(question=question, gt=reference, answer=prediction),
|
156 |
+
)
|
157 |
+
)
|
158 |
+
score = self._calculate_L3Score(
|
159 |
+
response.response_metadata["logprobs"]["content"][0]["top_logprobs"]
|
160 |
+
)
|
161 |
+
L3Score += score.item()
|
162 |
+
count += 1
|
163 |
+
|
164 |
+
if count > 0:
|
165 |
+
L3Score = L3Score / count
|
166 |
+
|
167 |
+
return {
|
168 |
+
"L3Score": L3Score,
|
169 |
+
}
|
170 |
+
|
171 |
+
def _calculate_L3Score(self, top_logprobs):
|
172 |
+
"""
|
173 |
+
Calculates the L3 score for a given response.
|
174 |
+
"""
|
175 |
+
|
176 |
+
normalized_suffixes = [self._normalize(suffix) for suffix in _SUFFIXES_TO_SCORE]
|
177 |
+
normalized_complement_suffixes = [
|
178 |
+
self._normalize(complement_suffix)
|
179 |
+
for complement_suffix in _COMPLEMENT_SUFFIXES
|
180 |
+
]
|
181 |
+
|
182 |
+
suffix_logprob = NEGATIVE_INF
|
183 |
+
complement_logprob = NEGATIVE_INF
|
184 |
+
suffix_index = -1
|
185 |
+
complement_suffix_index = -1
|
186 |
+
|
187 |
+
for i, token_logprob in enumerate(top_logprobs):
|
188 |
+
if self._normalize(token_logprob["token"]) in normalized_suffixes:
|
189 |
+
suffix_logprob = token_logprob["logprob"]
|
190 |
+
suffix_index = i
|
191 |
+
break
|
192 |
+
|
193 |
+
for i, token_logprob in enumerate(top_logprobs):
|
194 |
+
if (
|
195 |
+
self._normalize(token_logprob["token"])
|
196 |
+
in normalized_complement_suffixes
|
197 |
+
):
|
198 |
+
complement_suffix_index = i
|
199 |
+
complement_logprob = token_logprob["logprob"]
|
200 |
+
break
|
201 |
+
|
202 |
+
if suffix_index == -1 and complement_suffix_index == -1:
|
203 |
+
return 0.0
|
204 |
+
|
205 |
+
if suffix_index != -1 and complement_suffix_index != -1:
|
206 |
+
return self._renormalize_score(
|
207 |
+
yes_score=suffix_logprob, no_score=complement_logprob
|
208 |
+
)
|
209 |
+
|
210 |
+
lowest_logprob = top_logprobs[-1]["logprob"]
|
211 |
+
lowest_token_prob = np.exp(lowest_logprob)
|
212 |
+
sum_probs = sum(
|
213 |
+
[np.exp(token_logprob["logprob"]) for token_logprob in top_logprobs]
|
214 |
+
)
|
215 |
+
remaining_prob = 1 - sum_probs
|
216 |
+
min_prob = min(lowest_token_prob, remaining_prob)
|
217 |
+
if min_prob < 1e-8:
|
218 |
+
min_prob = 1e-8
|
219 |
+
reciprocal_logprob = np.log(min_prob)
|
220 |
+
|
221 |
+
if suffix_index != -1:
|
222 |
+
exclude_score = suffix_logprob
|
223 |
+
include_score = reciprocal_logprob
|
224 |
+
elif complement_suffix_index != -1:
|
225 |
+
exclude_score = reciprocal_logprob
|
226 |
+
include_score = complement_logprob
|
227 |
+
|
228 |
+
return self._renormalize_score(yes_score=exclude_score, no_score=include_score)
|
229 |
+
|
230 |
+
def _renormalize_score(self, yes_score: float, no_score: float) -> float:
|
231 |
+
"""Renormalize the scores to be between 0 and 1."""
|
232 |
+
return 1 / (1 + np.exp(-(yes_score - no_score)))
|
233 |
+
|
234 |
+
def _normalize(self, text: str) -> str:
|
235 |
+
"""Remove white space and lower case for normalized comparisons."""
|
236 |
+
return text.strip().lower()
|
237 |
+
|
238 |
+
|
239 |
+
if __name__ == "__main__":
|
240 |
+
|
241 |
+
questions = ["What is the capital of France?", "What is the capital of Germany?"]
|
242 |
+
predictions = ["Paris", "Moscow"]
|
243 |
+
references = ["Paris", "Berlin"]
|
244 |
+
|
245 |
+
L3Score_test = L3Score()
|
246 |
+
|
247 |
+
results = L3Score_test.compute(
|
248 |
+
questions=questions,
|
249 |
+
predictions=predictions,
|
250 |
+
references=references,
|
251 |
+
api_key=os.environ["OPENAI_API_KEY"],
|
252 |
+
provider="deepseek",
|
253 |
+
model="deepseek-coder",
|
254 |
+
)
|
255 |
+
print(results)
|
README.md
CHANGED
@@ -1,50 +1,167 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
datasets:
|
4 |
-
-
|
5 |
tags:
|
6 |
-
- evaluate
|
7 |
-
- metric
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
sdk: gradio
|
10 |
sdk_version: 3.19.1
|
11 |
app_file: app.py
|
12 |
pinned: false
|
13 |
---
|
14 |
|
15 |
-
# Metric Card
|
16 |
|
17 |
-
|
18 |
|
19 |
-
|
20 |
-
*Give a brief overview of this metric, including what task(s) it is usually used for, if any.*
|
21 |
|
22 |
-
|
23 |
-
|
24 |
|
25 |
-
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
|
31 |
-
|
32 |
|
33 |
-
|
34 |
|
35 |
-
|
36 |
|
37 |
-
|
38 |
-
*Give examples, preferrably with links to leaderboards or publications, to papers that have reported this metric, along with the values they have reported.*
|
39 |
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
## Limitations and Bias
|
44 |
-
*Note any known limitations or biases that the metric has, with links and references if possible.*
|
45 |
|
46 |
-
## Citation
|
47 |
-
*Cite the source where this metric was introduced.*
|
48 |
|
49 |
-
## Further References
|
50 |
-
*Add any useful further references.*
|
|
|
1 |
---
|
2 |
+
title: L3Score
|
3 |
datasets:
|
4 |
+
- google/spiqa
|
5 |
tags:
|
6 |
+
- evaluate
|
7 |
+
- metric
|
8 |
+
- semantic-similarity
|
9 |
+
- qa
|
10 |
+
- llm-eval
|
11 |
+
description: >
|
12 |
+
L3Score is a metric for evaluating the semantic similarity of free-form answers in question answering tasks.
|
13 |
+
It uses log-probabilities of "Yes"/"No" tokens from a language model acting as a judge.
|
14 |
+
Based on the SPIQA benchmark: https://arxiv.org/pdf/2407.09413
|
15 |
sdk: gradio
|
16 |
sdk_version: 3.19.1
|
17 |
app_file: app.py
|
18 |
pinned: false
|
19 |
---
|
20 |
|
21 |
+
# 🦢 Metric Card: L3Score
|
22 |
|
23 |
+
## 📌 Description
|
24 |
|
25 |
+
**L3Score** evaluates how semantically close a model-generated answer is to a reference answer for a given question. It prompts a **language model as a judge** using the following format:
|
|
|
26 |
|
27 |
+
```text
|
28 |
+
You are given a question, ground-truth answer, and a candidate answer.
|
29 |
|
30 |
+
Question: {question}
|
31 |
+
Ground-truth answer: {gt}
|
32 |
+
Candidate answer: {answer}
|
33 |
|
34 |
+
Is the semantic meaning of the ground-truth and candidate answers similar?
|
35 |
+
Answer in one word - Yes or No.
|
36 |
+
```
|
37 |
|
38 |
+
The model's **log-probabilities** for "Yes" and "No" tokens are used to compute the score.
|
39 |
|
40 |
+
### 🧮 Scoring Logic
|
41 |
|
42 |
+
Let $ l_{\text{yes}}$ and $ l_{\text{no}}$ be the log-probabilities of "Yes" and "No", respectively.
|
43 |
|
44 |
+
If neither token is in the top-5:
|
|
|
45 |
|
46 |
+
$$
|
47 |
+
\text{L3Score} = 0
|
48 |
+
$$
|
49 |
+
|
50 |
+
If both are present:
|
51 |
+
|
52 |
+
$$
|
53 |
+
\text{L3Score} = \frac{\exp(l_{\text{yes}})}{\exp(l_{\text{yes}}) + \exp(l_{\text{no}})}
|
54 |
+
$$
|
55 |
+
|
56 |
+
If only one is present, the missing token’s probability is estimated using the minimum of the remaining mass or the least likely token in top-5.
|
57 |
+
See [SPIQA paper](https://arxiv.org/pdf/2407.09413) for details.
|
58 |
+
|
59 |
+
---
|
60 |
+
|
61 |
+
## 🚀 How to Use
|
62 |
+
|
63 |
+
```python
|
64 |
+
import evaluate
|
65 |
+
|
66 |
+
l3score = evaluate.load("your-username/L3Score")
|
67 |
+
|
68 |
+
questions = ["What is the capital of France?", "What is the capital of Germany?"]
|
69 |
+
predictions = ["Paris", "Moscow"]
|
70 |
+
references = ["Paris", "Berlin"]
|
71 |
+
|
72 |
+
score = l3score.compute(
|
73 |
+
questions=questions,
|
74 |
+
predictions=predictions,
|
75 |
+
references=references,
|
76 |
+
api_key="your-openai-api-key",
|
77 |
+
provider="openai",
|
78 |
+
model="gpt-4o-mini"
|
79 |
+
)
|
80 |
+
|
81 |
+
print(score)
|
82 |
+
# {'L3Score': 0.49...}
|
83 |
+
```
|
84 |
+
|
85 |
+
---
|
86 |
+
|
87 |
+
### 🔠 Inputs
|
88 |
+
|
89 |
+
| Name | Type | Description |
|
90 |
+
|--------------|--------------|-----------------------------------------------------------------------------|
|
91 |
+
| `questions` | `list[str]` | The list of input questions. |
|
92 |
+
| `predictions`| `list[str]` | Generated answers by the model being evaluated. |
|
93 |
+
| `references` | `list[str]` | Ground-truth or reference answers. |
|
94 |
+
| `api_key` | `str` | API key for the selected LLM provider. |
|
95 |
+
| `provider` | `str` | Must support top-n token log-probabilities (currently available: `"openai"`, `"deepseek","xai"`).|
|
96 |
+
| `model` | `str` | Name of the evaluation LLM (e.g., `"gpt-4o-mini"`). |
|
97 |
+
|
98 |
+
---
|
99 |
+
|
100 |
+
### 📄 Output
|
101 |
+
|
102 |
+
A dictionary with a single key:
|
103 |
+
|
104 |
+
```python
|
105 |
+
{"L3Score": float}
|
106 |
+
```
|
107 |
+
|
108 |
+
The value is the **average score** over all (question, prediction, reference) triplets.
|
109 |
+
|
110 |
+
---
|
111 |
+
|
112 |
+
## 💡 Examples
|
113 |
+
|
114 |
+
```python
|
115 |
+
l3score = evaluate.load("your-username/L3Score")
|
116 |
+
|
117 |
+
score = l3score.compute(
|
118 |
+
questions=["What is the capital of France?"],
|
119 |
+
predictions=["Paris"],
|
120 |
+
references=["Paris"],
|
121 |
+
api_key="your-openai-api-key",
|
122 |
+
provider="openai",
|
123 |
+
model="gpt-4o-mini"
|
124 |
+
)
|
125 |
+
# {'L3Score': 0.99...}
|
126 |
+
|
127 |
+
score = l3score.compute(
|
128 |
+
questions=["What is the capital of Germany?"],
|
129 |
+
predictions=["Moscow"],
|
130 |
+
references=["Berlin"],
|
131 |
+
api_key="your-openai-api-key",
|
132 |
+
provider="openai",
|
133 |
+
model="gpt-4o-mini"
|
134 |
+
)
|
135 |
+
# {'L3Score': 0.00...}
|
136 |
+
```
|
137 |
+
|
138 |
+
---
|
139 |
+
|
140 |
+
## ⚠️ Limitations and Bias
|
141 |
+
|
142 |
+
- Requires models that expose **top-n token log-probabilities** (e.g., OpenAI, DeepSeek, Groq).
|
143 |
+
- Scores are **only comparable when using the same judge model**.
|
144 |
+
|
145 |
+
---
|
146 |
+
|
147 |
+
## 📖 Citation
|
148 |
+
|
149 |
+
```bibtex
|
150 |
+
@article{pramanick2024spiqa,
|
151 |
+
title={SPIQA: A Dataset for Multimodal Question Answering on Scientific Papers},
|
152 |
+
author={Pramanick, Shraman and Chellappa, Rama and Venugopalan, Subhashini},
|
153 |
+
journal={arXiv preprint arXiv:2407.09413},
|
154 |
+
year={2024}
|
155 |
+
}
|
156 |
+
```
|
157 |
+
|
158 |
+
---
|
159 |
+
|
160 |
+
## 🔗 Further References
|
161 |
+
|
162 |
+
- 🤗 [Dataset on Hugging Face](https://huggingface.co/datasets/google/spiqa)
|
163 |
+
- 🐙 [GitHub Repository](https://github.com/google/spiqa)
|
164 |
+
- 📄 [SPIQA Paper (arXiv:2407.09413)](https://arxiv.org/pdf/2407.09413)
|
165 |
|
|
|
|
|
166 |
|
|
|
|
|
167 |
|
|
|
|
app.py
CHANGED
@@ -2,5 +2,5 @@ import evaluate
|
|
2 |
from evaluate.utils import launch_gradio_widget
|
3 |
|
4 |
|
5 |
-
module = evaluate.load("nhop/
|
6 |
launch_gradio_widget(module)
|
|
|
2 |
from evaluate.utils import launch_gradio_widget
|
3 |
|
4 |
|
5 |
+
module = evaluate.load("nhop/L3Score")
|
6 |
launch_gradio_widget(module)
|
l3score.py
DELETED
@@ -1,95 +0,0 @@
|
|
1 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
"""TODO: Add a description here."""
|
15 |
-
|
16 |
-
import evaluate
|
17 |
-
import datasets
|
18 |
-
|
19 |
-
|
20 |
-
# TODO: Add BibTeX citation
|
21 |
-
_CITATION = """\
|
22 |
-
@InProceedings{huggingface:module,
|
23 |
-
title = {A great new module},
|
24 |
-
authors={huggingface, Inc.},
|
25 |
-
year={2020}
|
26 |
-
}
|
27 |
-
"""
|
28 |
-
|
29 |
-
# TODO: Add description of the module here
|
30 |
-
_DESCRIPTION = """\
|
31 |
-
This new module is designed to solve this great ML task and is crafted with a lot of care.
|
32 |
-
"""
|
33 |
-
|
34 |
-
|
35 |
-
# TODO: Add description of the arguments of the module here
|
36 |
-
_KWARGS_DESCRIPTION = """
|
37 |
-
Calculates how good are predictions given some references, using certain scores
|
38 |
-
Args:
|
39 |
-
predictions: list of predictions to score. Each predictions
|
40 |
-
should be a string with tokens separated by spaces.
|
41 |
-
references: list of reference for each prediction. Each
|
42 |
-
reference should be a string with tokens separated by spaces.
|
43 |
-
Returns:
|
44 |
-
accuracy: description of the first score,
|
45 |
-
another_score: description of the second score,
|
46 |
-
Examples:
|
47 |
-
Examples should be written in doctest format, and should illustrate how
|
48 |
-
to use the function.
|
49 |
-
|
50 |
-
>>> my_new_module = evaluate.load("my_new_module")
|
51 |
-
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
|
52 |
-
>>> print(results)
|
53 |
-
{'accuracy': 1.0}
|
54 |
-
"""
|
55 |
-
|
56 |
-
# TODO: Define external resources urls if needed
|
57 |
-
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
|
58 |
-
|
59 |
-
|
60 |
-
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
61 |
-
class l3score(evaluate.Metric):
|
62 |
-
"""TODO: Short description of my evaluation module."""
|
63 |
-
|
64 |
-
def _info(self):
|
65 |
-
# TODO: Specifies the evaluate.EvaluationModuleInfo object
|
66 |
-
return evaluate.MetricInfo(
|
67 |
-
# This is the description that will appear on the modules page.
|
68 |
-
module_type="metric",
|
69 |
-
description=_DESCRIPTION,
|
70 |
-
citation=_CITATION,
|
71 |
-
inputs_description=_KWARGS_DESCRIPTION,
|
72 |
-
# This defines the format of each prediction and reference
|
73 |
-
features=datasets.Features({
|
74 |
-
'predictions': datasets.Value('int64'),
|
75 |
-
'references': datasets.Value('int64'),
|
76 |
-
}),
|
77 |
-
# Homepage of the module for documentation
|
78 |
-
homepage="http://module.homepage",
|
79 |
-
# Additional links to the codebase or references
|
80 |
-
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
|
81 |
-
reference_urls=["http://path.to.reference.url/new_module"]
|
82 |
-
)
|
83 |
-
|
84 |
-
def _download_and_prepare(self, dl_manager):
|
85 |
-
"""Optional: download external resources useful to compute the scores"""
|
86 |
-
# TODO: Download external resources if needed
|
87 |
-
pass
|
88 |
-
|
89 |
-
def _compute(self, predictions, references):
|
90 |
-
"""Returns the scores"""
|
91 |
-
# TODO: Compute the different scores of the module
|
92 |
-
accuracy = sum(i == j for i, j in zip(predictions, references)) / len(predictions)
|
93 |
-
return {
|
94 |
-
"accuracy": accuracy,
|
95 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1 +1,7 @@
|
|
1 |
-
git+https://github.com/huggingface/evaluate@main
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
git+https://github.com/huggingface/evaluate@main
|
2 |
+
langchain==0.3.23
|
3 |
+
langchain-deepseek==0.1.3
|
4 |
+
langchain-openai==0.3.12
|
5 |
+
langchain-community==0.3.21
|
6 |
+
langchain-core==0.3.52
|
7 |
+
numpy==2.2.4
|