|
import torch
|
|
from torch import nn
|
|
|
|
class BasicBlock(nn.Module):
|
|
expansion = 1
|
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
|
super(BasicBlock, self).__init__()
|
|
self.conv1 = self._conv3x3(inplanes, planes)
|
|
self.bn1 = nn.BatchNorm2d(planes)
|
|
self.conv2 = self._conv3x3(planes, planes)
|
|
self.bn2 = nn.BatchNorm2d(planes)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.downsample = downsample
|
|
self.stride = stride
|
|
|
|
def _conv3x3(self, in_planes, out_planes, stride=1):
|
|
"3x3 convolution with padding"
|
|
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
|
|
padding=1, bias=False)
|
|
|
|
def forward(self, x):
|
|
residual = x
|
|
|
|
out = self.conv1(x)
|
|
out = self.bn1(out)
|
|
out = self.relu(out)
|
|
|
|
out = self.conv2(out)
|
|
out = self.bn2(out)
|
|
|
|
if self.downsample is not None:
|
|
residual = self.downsample(x)
|
|
out += residual
|
|
out = self.relu(out)
|
|
|
|
return out
|
|
|
|
class ResNet(nn.Module):
|
|
|
|
def __init__(self, input_channel, output_channel, block, layers):
|
|
super(ResNet, self).__init__()
|
|
|
|
self.output_channel_block = [int(output_channel / 4), int(output_channel / 2), output_channel, output_channel]
|
|
|
|
self.inplanes = int(output_channel / 8)
|
|
self.conv0_1 = nn.Conv2d(input_channel, int(output_channel / 16),
|
|
kernel_size=3, stride=1, padding=1, bias=False)
|
|
self.bn0_1 = nn.BatchNorm2d(int(output_channel / 16))
|
|
self.conv0_2 = nn.Conv2d(int(output_channel / 16), self.inplanes,
|
|
kernel_size=3, stride=1, padding=1, bias=False)
|
|
self.bn0_2 = nn.BatchNorm2d(self.inplanes)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
|
|
self.maxpool1 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
|
|
self.layer1 = self._make_layer(block, self.output_channel_block[0], layers[0])
|
|
self.conv1 = nn.Conv2d(self.output_channel_block[0], self.output_channel_block[
|
|
0], kernel_size=3, stride=1, padding=1, bias=False)
|
|
self.bn1 = nn.BatchNorm2d(self.output_channel_block[0])
|
|
|
|
self.maxpool2 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
|
|
self.layer2 = self._make_layer(block, self.output_channel_block[1], layers[1], stride=1)
|
|
self.conv2 = nn.Conv2d(self.output_channel_block[1], self.output_channel_block[
|
|
1], kernel_size=3, stride=1, padding=1, bias=False)
|
|
self.bn2 = nn.BatchNorm2d(self.output_channel_block[1])
|
|
|
|
self.maxpool3 = nn.MaxPool2d(kernel_size=2, stride=(2, 1), padding=(0, 1))
|
|
self.layer3 = self._make_layer(block, self.output_channel_block[2], layers[2], stride=1)
|
|
self.conv3 = nn.Conv2d(self.output_channel_block[2], self.output_channel_block[
|
|
2], kernel_size=3, stride=1, padding=1, bias=False)
|
|
self.bn3 = nn.BatchNorm2d(self.output_channel_block[2])
|
|
|
|
self.layer4 = self._make_layer(block, self.output_channel_block[3], layers[3], stride=1)
|
|
self.conv4_1 = nn.Conv2d(self.output_channel_block[3], self.output_channel_block[
|
|
3], kernel_size=2, stride=(2, 1), padding=(0, 1), bias=False)
|
|
self.bn4_1 = nn.BatchNorm2d(self.output_channel_block[3])
|
|
self.conv4_2 = nn.Conv2d(self.output_channel_block[3], self.output_channel_block[
|
|
3], kernel_size=2, stride=1, padding=0, bias=False)
|
|
self.bn4_2 = nn.BatchNorm2d(self.output_channel_block[3])
|
|
|
|
def _make_layer(self, block, planes, blocks, stride=1):
|
|
downsample = None
|
|
if stride != 1 or self.inplanes != planes * block.expansion:
|
|
downsample = nn.Sequential(
|
|
nn.Conv2d(self.inplanes, planes * block.expansion,
|
|
kernel_size=1, stride=stride, bias=False),
|
|
nn.BatchNorm2d(planes * block.expansion),
|
|
)
|
|
|
|
layers = []
|
|
layers.append(block(self.inplanes, planes, stride, downsample))
|
|
self.inplanes = planes * block.expansion
|
|
for i in range(1, blocks):
|
|
layers.append(block(self.inplanes, planes))
|
|
|
|
return nn.Sequential(*layers)
|
|
|
|
def forward(self, x):
|
|
x = self.conv0_1(x)
|
|
x = self.bn0_1(x)
|
|
x = self.relu(x)
|
|
x = self.conv0_2(x)
|
|
x = self.bn0_2(x)
|
|
x = self.relu(x)
|
|
|
|
x = self.maxpool1(x)
|
|
x = self.layer1(x)
|
|
x = self.conv1(x)
|
|
x = self.bn1(x)
|
|
x = self.relu(x)
|
|
|
|
x = self.maxpool2(x)
|
|
x = self.layer2(x)
|
|
x = self.conv2(x)
|
|
x = self.bn2(x)
|
|
x = self.relu(x)
|
|
|
|
x = self.maxpool3(x)
|
|
x = self.layer3(x)
|
|
x = self.conv3(x)
|
|
x = self.bn3(x)
|
|
x = self.relu(x)
|
|
|
|
x = self.layer4(x)
|
|
x = self.conv4_1(x)
|
|
x = self.bn4_1(x)
|
|
x = self.relu(x)
|
|
x = self.conv4_2(x)
|
|
x = self.bn4_2(x)
|
|
conv = self.relu(x)
|
|
|
|
conv = conv.transpose(-1, -2)
|
|
conv = conv.flatten(2)
|
|
conv = conv.permute(-1, 0, 1)
|
|
|
|
return conv
|
|
|
|
def Resnet50(ss, hidden):
|
|
return ResNet(3, hidden, BasicBlock, [1, 2, 5, 3])
|
|
|
|
|