File size: 9,612 Bytes
8e0957b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
// @ts-expect-error this package does not have typing
import TextLineStream from 'textlinestream';
import { Client } from '@gradio/client';
import decodeAudio from 'audio-decode';
// ponyfill for missing ReadableStream asyncIterator on Safari
import { asyncIterator } from '@sec-ant/readable-stream/ponyfill/asyncIterator';
import { CONFIG } from '../config';
// return URL to the WAV file
export const generateAudio = async (
content: string,
voice: string,
speed: number = 1.1
): Promise<string> => {
const client = await Client.connect(CONFIG.ttsSpaceId);
const result = await client.predict('/tts', {
text: content,
voice,
speed,
});
console.log(result.data);
return (result.data as any)[0].url;
};
export const pickRand = <T>(arr: T[]): T => {
return arr[Math.floor(Math.random() * arr.length)];
};
// wrapper for SSE
export async function* getSSEStreamAsync(fetchResponse: Response) {
if (!fetchResponse.body) throw new Error('Response body is empty');
const lines: ReadableStream<string> = fetchResponse.body
.pipeThrough(new TextDecoderStream())
.pipeThrough(new TextLineStream());
// @ts-expect-error asyncIterator complains about type, but it should work
for await (const line of asyncIterator(lines)) {
//if (isDev) console.log({ line });
if (line.startsWith('data:') && !line.endsWith('[DONE]')) {
const data = JSON.parse(line.slice(5));
yield data;
} else if (line.startsWith('error:')) {
const data = JSON.parse(line.slice(6));
throw new Error(data.message || 'Unknown error');
}
}
}
/**
* Ok now, most of the functions below are written by ChatGPT using Reasoning mode.
*/
////////////////////////////////////////
// Audio manipulation utils
export const trimSilence = (audioBuffer: AudioBuffer): AudioBuffer => {
const threshold = 0.01; // Amplitude below which a sample is considered silent.
const numChannels = audioBuffer.numberOfChannels;
const totalSamples = audioBuffer.length;
// Helper function to check if a sample at the given index is silent in all channels.
const isSilent = (index: number): boolean => {
for (let channel = 0; channel < numChannels; channel++) {
const channelData = audioBuffer.getChannelData(channel);
if (Math.abs(channelData[index]) > threshold) {
return false;
}
}
return true;
};
// Find the first non-silent sample.
let startSample = 0;
while (startSample < totalSamples && isSilent(startSample)) {
startSample++;
}
// Find the last non-silent sample.
let endSample = totalSamples - 1;
while (endSample >= startSample && isSilent(endSample)) {
endSample--;
}
// If no non-silent samples were found, return an empty AudioBuffer.
if (startSample >= totalSamples || endSample < startSample) {
return new AudioBuffer({
length: 1,
numberOfChannels: numChannels,
sampleRate: audioBuffer.sampleRate,
});
}
const newLength = endSample - startSample + 1;
const newBuffer = new AudioBuffer({
length: newLength,
numberOfChannels: numChannels,
sampleRate: audioBuffer.sampleRate,
});
// Copy the trimmed audio samples from the original buffer to the new buffer.
for (let channel = 0; channel < numChannels; channel++) {
const oldData = audioBuffer.getChannelData(channel);
const newData = newBuffer.getChannelData(channel);
for (let i = 0; i < newLength; i++) {
newData[i] = oldData[startSample + i];
}
}
return newBuffer;
};
export const joinAudio = (
audio1: AudioBuffer,
audio2: AudioBuffer,
gapSeconds: number
): AudioBuffer => {
const sampleRate = audio1.sampleRate;
const numChannels = audio1.numberOfChannels;
// Ensure both audio buffers are compatible.
if (audio2.sampleRate !== sampleRate) {
throw new Error('Audio buffers must have the same sample rate');
}
if (audio2.numberOfChannels !== numChannels) {
throw new Error('Audio buffers must have the same number of channels');
}
let newLength: number;
if (gapSeconds > 0) {
// Pad with silence: gapSamples of silence in between.
const gapSamples = Math.round(gapSeconds * sampleRate);
newLength = audio1.length + gapSamples + audio2.length;
} else if (gapSeconds === 0) {
// Simply join one after the other.
newLength = audio1.length + audio2.length;
} else {
// gapSeconds < 0 means we blend (overlap) the end of audio1 with the beginning of audio2.
const overlapSamplesRequested = Math.round(-gapSeconds * sampleRate);
// Ensure we don't overlap more than available in either buffer.
const effectiveOverlap = Math.min(
overlapSamplesRequested,
audio1.length,
audio2.length
);
newLength = audio1.length + audio2.length - effectiveOverlap;
}
// Create a new AudioBuffer for the joined result.
const newBuffer = new AudioBuffer({
length: newLength,
numberOfChannels: numChannels,
sampleRate: sampleRate,
});
// Process each channel.
for (let channel = 0; channel < numChannels; channel++) {
const outputData = newBuffer.getChannelData(channel);
const data1 = audio1.getChannelData(channel);
const data2 = audio2.getChannelData(channel);
let offset = 0;
if (gapSeconds < 0) {
// Blend the join section.
const overlapSamplesRequested = Math.round(-gapSeconds * sampleRate);
const effectiveOverlap = Math.min(
overlapSamplesRequested,
audio1.length,
audio2.length
);
// Copy audio1 data up to the start of the overlapping section.
const nonOverlapLength = audio1.length - effectiveOverlap;
outputData.set(data1.subarray(0, nonOverlapLength), offset);
offset += nonOverlapLength;
// Blend overlapping region.
for (let i = 0; i < effectiveOverlap; i++) {
// Linear crossfade:
const fadeOut = 1 - i / effectiveOverlap;
const fadeIn = i / effectiveOverlap;
outputData[offset + i] =
data1[nonOverlapLength + i] * fadeOut + data2[i] * fadeIn;
}
offset += effectiveOverlap;
// Append remaining audio2 data.
outputData.set(data2.subarray(effectiveOverlap), offset);
} else if (gapSeconds === 0) {
// Directly concatenate: copy audio1 then audio2.
outputData.set(data1, offset);
offset += audio1.length;
outputData.set(data2, offset);
} else {
// gapSeconds > 0: insert silence between audio1 and audio2.
const gapSamples = Math.round(gapSeconds * sampleRate);
outputData.set(data1, offset);
offset += audio1.length;
// Silence: the buffer is initialized with zeros, so we simply move the offset.
offset += gapSamples;
outputData.set(data2, offset);
}
}
return newBuffer;
};
////////////////////////////////////////
// Audio formatting utils
export const loadWavAndDecode = async (url: string): Promise<AudioBuffer> => {
const response = await fetch(url);
const arrayBuffer = await response.arrayBuffer();
const audioBuffer = await decodeAudio(arrayBuffer);
return audioBuffer;
};
export function audioBufferToWav(
buffer: AudioBuffer,
options: { float32?: boolean } = {}
): ArrayBuffer {
const numChannels = buffer.numberOfChannels;
const sampleRate = buffer.sampleRate;
const format = options.float32 ? 3 : 1; // 3 = IEEE float, 1 = PCM
const bitDepth = options.float32 ? 32 : 16;
const numSamples = buffer.length;
const headerLength = 44;
const bytesPerSample = bitDepth / 8;
const dataLength = numSamples * numChannels * bytesPerSample;
const bufferLength = headerLength + dataLength;
const arrayBuffer = new ArrayBuffer(bufferLength);
const view = new DataView(arrayBuffer);
let offset = 0;
function writeString(str: string) {
for (let i = 0; i < str.length; i++) {
view.setUint8(offset, str.charCodeAt(i));
offset++;
}
}
// Write WAV header
writeString('RIFF');
view.setUint32(offset, 36 + dataLength, true);
offset += 4;
writeString('WAVE');
writeString('fmt ');
view.setUint32(offset, 16, true);
offset += 4;
view.setUint16(offset, format, true);
offset += 2;
view.setUint16(offset, numChannels, true);
offset += 2;
view.setUint32(offset, sampleRate, true);
offset += 4;
view.setUint32(offset, sampleRate * numChannels * bytesPerSample, true);
offset += 4;
view.setUint16(offset, numChannels * bytesPerSample, true);
offset += 2;
view.setUint16(offset, bitDepth, true);
offset += 2;
writeString('data');
view.setUint32(offset, dataLength, true);
offset += 4;
// Write PCM samples: interleave channels
const channels: Float32Array[] = [];
for (let i = 0; i < numChannels; i++) {
channels.push(buffer.getChannelData(i));
}
for (let i = 0; i < numSamples; i++) {
for (let channel = 0; channel < numChannels; channel++) {
let sample = channels[channel][i];
// Clamp the sample to [-1, 1]
sample = Math.max(-1, Math.min(1, sample));
if (options.float32) {
view.setFloat32(offset, sample, true);
offset += 4;
} else {
// Convert to 16-bit PCM sample
const intSample = sample < 0 ? sample * 0x8000 : sample * 0x7fff;
view.setInt16(offset, intSample, true);
offset += 2;
}
}
}
return arrayBuffer;
}
export const blobFromAudioBuffer = (audioBuffer: AudioBuffer): Blob => {
// Using 16-bit PCM for compatibility.
const wavArrayBuffer = audioBufferToWav(audioBuffer, { float32: false });
return new Blob([wavArrayBuffer], { type: 'audio/wav' });
};
|