SimpleChatbot / app.py
ngebodh's picture
Fixed typo
63f1864 verified
""" Simple Chatbot
@author: Nigel Gebodh
@email: [email protected]
"""
import numpy as np
import streamlit as st
from openai import OpenAI
import os
import sys
from dotenv import load_dotenv, dotenv_values
load_dotenv()
# #===========================================
# updates = '''
# Updates
# + 04/20/2025
# - Changed the inference from HF b/c
# API calls are not very limted.
# - Added API call limiting to allow for demoing
# - Added support for adding your own API token.
# + 04/16/2025
# - Changed the inference points on HF b/c
# older points no longer supported.
# '''
# #-------------------------------------------
API_CALL_LIMIT = 10 # Define the limit
if 'api_call_count' not in st.session_state:
st.session_state.api_call_count = 0
st.session_state.remaining_calls = API_CALL_LIMIT
model_links_hf ={
"Gemma-3-27B-it":{
"inf_point":"https://router.huggingface.co/nebius/v1",
"link":"google/gemma-3-27b-it-fast",
},
"Meta-Llama-3.1-8B":{
"inf_point":"https://router.huggingface.co/nebius/v1",
"link":"meta-llama/Meta-Llama-3.1-8B-Instruct-fast",
},
"Mistral-7B":{
"inf_point":"https://router.huggingface.co/together/v1",
"link":"mistralai/Mistral-7B-Instruct-v0.3",
},
"Gemma-2-27B-it":{
"inf_point":"https://router.huggingface.co/nebius/v1",
"link":"google/gemma-2-27b-it-fast",
},
"Gemma-2-2B-it":{
"inf_point":"https://router.huggingface.co/nebius/v1",
"link":"google/gemma-2-2b-it-fast",
},
"Zephyr-7B-Ξ²":{
"inf_point":"https://router.huggingface.co/hf-inference/models/HuggingFaceH4/zephyr-7b-beta/v1",
"link":"HuggingFaceH4/zephyr-7b-beta",
},
}
model_links_groq ={
"Gemma-2-9B-it":{
"inf_point":"https://api.groq.com/openai/v1",
"link":"gemma2-9b-it",
},
"Meta-Llama-3.1-8B":{
"inf_point":"https://api.groq.com/openai/v1",
"link":"llama-3.1-8b-instant",
},
}
#Pull info about the model to display
model_info ={
"Mistral-7B":
{'description':"""The Mistral model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
\nIt was created by the [**Mistral AI**](https://mistral.ai/news/announcing-mistral-7b/) team as has over **7 billion parameters.** \n""",
'logo':'https://cdn-avatars.huggingface.co/v1/production/uploads/62dac1c7a8ead43d20e3e17a/wrLf5yaGC6ng4XME70w6Z.png'},
"Gemma-2-27B-it":
{'description':"""The Gemma model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
\nIt was created by the [**Google's AI Team**](https://blog.google/technology/developers/gemma-open-models/) team as has over **27 billion parameters.** \n""",
'logo':'https://pbs.twimg.com/media/GG3sJg7X0AEaNIq.jpg'},
"Gemma-3-27B-it":
{'description':"""The Gemma model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
\nIt was created by the [**Google's AI Team**](https://blog.google/technology/developers/gemma-open-models/) team as has over **27 billion parameters.** \n""",
'logo':'https://pbs.twimg.com/media/GG3sJg7X0AEaNIq.jpg'},
"Gemma-2-2B-it":
{'description':"""The Gemma model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
\nIt was created by the [**Google's AI Team**](https://blog.google/technology/developers/gemma-open-models/) team as has over **2 billion parameters.** \n""",
'logo':'https://pbs.twimg.com/media/GG3sJg7X0AEaNIq.jpg'},
"Gemma-2-9B-it":
{'description':"""The Gemma model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
\nIt was created by the [**Google's AI Team**](https://blog.google/technology/developers/gemma-open-models/) team as has over **9 billion parameters.** \n""",
'logo':'https://pbs.twimg.com/media/GG3sJg7X0AEaNIq.jpg'},
"Zephyr-7B":
{'description':"""The Zephyr model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
\nFrom Huggingface: \n\
Zephyr is a series of language models that are trained to act as helpful assistants. \
[Zephyr 7B Gemma](https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-v0.1)\
is the third model in the series, and is a fine-tuned version of google/gemma-7b \
that was trained on on a mix of publicly available, synthetic datasets using Direct Preference Optimization (DPO)\n""",
'logo':'https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-v0.1/resolve/main/thumbnail.png'},
"Zephyr-7B-Ξ²":
{'description':"""The Zephyr model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
\nFrom Huggingface: \n\
Zephyr is a series of language models that are trained to act as helpful assistants. \
[Zephyr-7B-Ξ²](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta)\
is the second model in the series, and is a fine-tuned version of mistralai/Mistral-7B-v0.1 \
that was trained on on a mix of publicly available, synthetic datasets using Direct Preference Optimization (DPO)\n""",
'logo':'https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/resolve/main/thumbnail.png'},
"Meta-Llama-3-8B":
{'description':"""The Llama (3) model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
\nIt was created by the [**Meta's AI**](https://llama.meta.com/) team and has over **8 billion parameters.** \n""",
'logo':'Llama_logo.png'},
"Meta-Llama-3.1-8B":
{'description':"""The Llama (3.1) model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
\nIt was created by the [**Meta's AI**](https://llama.meta.com/) team and has over **8 billion parameters.** \n""",
'logo':'Llama3_1_logo.png'},
}
#Random dog images for error message
random_dog = ["0f476473-2d8b-415e-b944-483768418a95.jpg",
"1bd75c81-f1d7-4e55-9310-a27595fa8762.jpg",
"526590d2-8817-4ff0-8c62-fdcba5306d02.jpg",
"1326984c-39b0-492c-a773-f120d747a7e2.jpg",
"42a98d03-5ed7-4b3b-af89-7c4876cb14c3.jpg",
"8b3317ed-2083-42ac-a575-7ae45f9fdc0d.jpg",
"ee17f54a-83ac-44a3-8a35-e89ff7153fb4.jpg",
"027eef85-ccc1-4a66-8967-5d74f34c8bb4.jpg",
"08f5398d-7f89-47da-a5cd-1ed74967dc1f.jpg",
"0fd781ff-ec46-4bdc-a4e8-24f18bf07def.jpg",
"0fb4aeee-f949-4c7b-a6d8-05bf0736bdd1.jpg",
"6edac66e-c0de-4e69-a9d6-b2e6f6f9001b.jpg",
"bfb9e165-c643-4993-9b3a-7e73571672a6.jpg"]
def reset_conversation():
'''
Resets Conversation
'''
st.session_state.conversation = []
st.session_state.messages = []
return None
# --- Sidebar Setup ---
st.sidebar.title("Chatbot Settings")
#Define model clients
client_names = ["Provided API Call", "HF-Token"]
client_select = st.sidebar.selectbox("Select Model Client", client_names)
if "HF-Token" in client_select:
try:
if "API_token" not in st.session_state:
st.session_state.API_token = None
st.session_state.API_token = st.sidebar.text_input("Enter your Hugging Face Access Token", type="password")
model_links = model_links_hf
except Exception as e:
st.sidebar.error(f"Credentials Error:\n\n {e}")
elif "Provided API Call" in client_select:
try:
if "API_token" not in st.session_state:
st.session_state.API_token = None
st.session_state.API_token = os.environ.get('GROQ_API_TOKEN')#Should be like os.environ.get('HUGGINGFACE_API_TOKEN')
model_links = model_links_groq
except Exception as e:
st.sidebar.error(f"Credentials Error:\n\n {e}")
# Define the available models
models =[key for key in model_links.keys()]
# Create the sidebar with the dropdown for model selection
selected_model = st.sidebar.selectbox("Select Model", models)
#Create a temperature slider
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, (0.5))
#Add reset button to clear conversation
st.sidebar.button('Reset Chat', on_click=reset_conversation, type="primary") #Reset button
st.sidebar.divider() # Add a visual separator
# Create model description
st.sidebar.subheader(f"About {selected_model}")
st.sidebar.write(f"You're now chatting with **{selected_model}**")
st.sidebar.markdown(model_info[selected_model]['description'])
st.sidebar.image(model_info[selected_model]['logo'])
st.sidebar.markdown("*Generated content may be inaccurate or false.*")
st.sidebar.markdown("\nLearn how to build this chatbot [here](https://ngebodh.github.io/projects/2024-03-05/).")
st.sidebar.markdown("\nRun into issues? \nTry coming back in a bit, GPU access might be limited or something is down.")
if "prev_option" not in st.session_state:
st.session_state.prev_option = selected_model
if st.session_state.prev_option != selected_model:
st.session_state.messages = []
st.session_state.prev_option = selected_model
reset_conversation()
#Pull in the model we want to use
repo_id = model_links[selected_model]
# initialize the client
client = OpenAI(
base_url=model_links[selected_model]["inf_point"],#"https://api-inference.huggingface.co/v1",
api_key=st.session_state.API_token#os.environ.get('HUGGINGFACE_API_TOKEN')#"hf_xxx" # Replace with your token
)
st.subheader(f'AI - {selected_model}')
# Set a default model
if selected_model not in st.session_state:
st.session_state[selected_model] = model_links[selected_model]
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if prompt := st.chat_input(f"Hi I'm {selected_model}, ask me a question "):
# Display user message in chat message container
with st.chat_message("user"):
st.markdown(prompt)
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
if st.session_state.api_call_count >= API_CALL_LIMIT:
# Add the warning to the displayed messages, but not to the history sent to the model
response = f"LIMIT REACHED: Sorry, you have reached the API call limit for this session."
# st.write(response)
st.warning(f"Sorry, you have reached the API call limit for this session.")
st.session_state.messages.append({"role": "assistant", "content": response })
else:
# Display assistant response in chat message container
with st.chat_message("assistant"):
try:
st.session_state.api_call_count += 1
# Add a spinner for better UX while waiting
with st.spinner(f"Asking {selected_model}..."):
stream = client.chat.completions.create(
model=model_links[selected_model]["link"],
messages=[
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
],
temperature=temp_values,#0.5,
stream=True,
max_tokens=3000,
)
response = st.write_stream(stream)
remaining_calls = (API_CALL_LIMIT) - st.session_state.api_call_count
st.markdown(f"\n\n <span style='float: right; font-size: 0.8em; color: gray;'>API calls:({remaining_calls}/{API_CALL_LIMIT})</span>", unsafe_allow_html=True)
except Exception as e:
response = "πŸ˜΅β€πŸ’« Looks like someone unplugged something!\
\n Either the model space is being updated or something is down.\
\n\
\n Try again later. \
\n\
\n Here's a random pic of a 🐢:"
st.write(response)
random_dog_pick = 'https://random.dog/'+ random_dog[np.random.randint(len(random_dog))]
st.image(random_dog_pick)
st.write("This was the error message:")
st.write(e)
st.session_state.messages.append({"role": "assistant", "content": response})