Spaces:
Runtime error
Runtime error
import plotly.graph_objects as go # Import Plotly for interactive plots | |
from mpl_toolkits.mplot3d import Axes3D | |
import networkx as nx | |
import numpy as np | |
import json | |
import sys | |
import random | |
def generate_tree(current_x, current_y, depth, max_depth, max_nodes, x_range, G, parent=None, node_count_per_depth=None): | |
"""Generates a tree of nodes with positions adjusted on the x-axis, y-axis, and number of nodes on the z-axis.""" | |
if node_count_per_depth is None: | |
node_count_per_depth = {} | |
if depth > max_depth: | |
return node_count_per_depth | |
if depth not in node_count_per_depth: | |
node_count_per_depth[depth] = 0 | |
num_children = random.randint(1, max_nodes) | |
x_positions = [current_x + i * x_range / (num_children + 1) for i in range(num_children)] | |
for x in x_positions: | |
node_id = len(G.nodes) | |
node_count_per_depth[depth] += 1 | |
prob = random.uniform(0, 1) | |
G.add_node(node_id, pos=(x, prob, depth)) | |
if parent is not None: | |
G.add_edge(parent, node_id) | |
generate_tree(x, current_y + 1, depth + 1, max_depth, max_nodes, x_range, G, parent=node_id, node_count_per_depth=node_count_per_depth) | |
return node_count_per_depth | |
def build_graph_from_json(json_data, G): | |
"""Builds a graph from JSON data, handling subevents recursively.""" | |
def add_event(parent_id, event_data, depth): | |
node_id = len(G.nodes) | |
prob = event_data['probability'] / 100.0 | |
# Use event_number as the z-coordinate for better visualization | |
pos = (depth, prob, event_data['event_number']) | |
label = event_data['name'] | |
G.add_node(node_id, pos=pos, label=label) | |
if parent_id is not None: | |
G.add_edge(parent_id, node_id) # Connect to parent | |
subevents = event_data.get('subevents', {}).get('event', []) | |
if not isinstance(subevents, list): | |
subevents = [subevents] | |
for subevent in subevents: | |
add_event(node_id, subevent, depth + 1) # Recursively add subevents | |
# Iterate through all top-level events | |
for event_data in json_data.get('events', {}).values(): | |
add_event(None, event_data, 0) # Add each event as a root node | |
def find_paths(G): | |
"""Finds paths with highest/lowest probability and longest/shortest durations.""" | |
best_path, worst_path = None, None | |
longest_path, shortest_path = None, None | |
best_mean_prob, worst_mean_prob = -1, float('inf') | |
max_duration, min_duration = -1, float('inf') | |
# Use nx.all_pairs_shortest_path for efficiency | |
all_paths_dict = dict(nx.all_pairs_shortest_path(G)) | |
for source, paths_from_source in all_paths_dict.items(): | |
for target, path in paths_from_source.items(): | |
if source != target and all('pos' in G.nodes[node] for node in path): | |
probabilities = [G.nodes[node]['pos'][1] for node in path] | |
mean_prob = np.mean(probabilities) | |
if mean_prob > best_mean_prob: | |
best_mean_prob = mean_prob | |
best_path = path | |
if mean_prob < worst_mean_prob: | |
worst_mean_prob = mean_prob | |
worst_path = path | |
x_positions = [G.nodes[node]['pos'][0] for node in path] | |
duration = max(x_positions) - min(x_positions) | |
if duration > max_duration: | |
max_duration = duration | |
longest_path = path | |
if duration < min_duration and duration > 0: # Avoid paths with 0 duration | |
min_duration = duration | |
shortest_path = path | |
return best_path, best_mean_prob, worst_path, worst_mean_prob, longest_path, shortest_path | |
def draw_path_3d_interactive(G, path, highlight_color='blue'): | |
"""Draws a specific path in 3D using Plotly for interactivity.""" | |
H = G.subgraph(path).copy() | |
pos = nx.get_node_attributes(G, 'pos') | |
x_vals, y_vals, z_vals = zip(*[pos[node] for node in path]) | |
node_colors = ['red' if prob < 0.33 else 'blue' if prob < 0.67 else 'green' for _, prob, _ in [pos[node] for node in path]] | |
node_trace = go.Scatter3d(x=x_vals, y=y_vals, z=z_vals, mode='markers+text', | |
marker=dict(size=10, color=node_colors, line=dict(width=1, color='black')), | |
text=list(map(str, path)), textposition='top center', hoverinfo='text') | |
edge_traces = [] | |
for edge in H.edges(): | |
x_start, y_start, z_start = pos[edge[0]] | |
x_end, y_end, z_end = pos[edge[1]] | |
edge_trace = go.Scatter3d(x=[x_start, x_end], y=[y_start, y_end], z=[z_start, z_end], | |
mode='lines', line=dict(width=2, color=highlight_color), hoverinfo='none') | |
edge_traces.append(edge_trace) | |
layout = go.Layout(scene=dict(xaxis_title='Time (weeks)', yaxis_title='Event Probability', zaxis_title='Event Number'), | |
title='3D Event Tree - Path') | |
fig = go.Figure(data=[node_trace] + edge_traces, layout=layout) | |
fig.show() | |
def draw_global_tree_3d_interactive(G): | |
"""Draws the entire graph in 3D using Plotly for interactivity.""" | |
pos = nx.get_node_attributes(G, 'pos') | |
labels = nx.get_node_attributes(G, 'label') | |
if not pos: | |
print("Graph is empty. No nodes to visualize.") | |
return | |
x_vals, y_vals, z_vals = zip(*pos.values()) | |
node_colors = ['red' if prob < 0.33 else 'blue' if prob < 0.67 else 'green' for _, prob, _ in pos.values()] | |
node_trace = go.Scatter3d(x=x_vals, y=y_vals, z=z_vals, mode='markers+text', | |
marker=dict(size=10, color=node_colors, line=dict(width=1, color='black')), | |
text=list(labels.values()), textposition='top center', hoverinfo='text') | |
edge_traces = [] | |
for edge in G.edges(): | |
x_start, y_start, z_start = pos[edge[0]] | |
x_end, y_end, z_end = pos[edge[1]] | |
edge_trace = go.Scatter3d(x=[x_start, x_end], y=[y_start, y_end], z=[z_start, z_end], | |
mode='lines', line=dict(width=2, color='gray'), hoverinfo='none') | |
edge_traces.append(edge_trace) | |
layout = go.Layout(scene=dict(xaxis_title='Time', yaxis_title='Probability', zaxis_title='Event Number'), | |
title='3D Event Tree') | |
fig = go.Figure(data=[node_trace] + edge_traces, layout=layout) | |
fig.show() | |
def main(json_data): | |
G = nx.DiGraph() | |
build_graph_from_json(json_data, G) # Build graph from the provided JSON data | |
# Draw the interactive graph using Plotly | |
draw_global_tree_3d_interactive(G) | |
best_path, best_mean_prob, worst_path, worst_mean_prob, longest_path, shortest_path = find_paths(G) | |
if best_path: | |
print(f"\nPath with the highest average probability: {' -> '.join(map(str, best_path))}") | |
print(f"Average probability: {best_mean_prob:.2f}") | |
if worst_path: | |
print(f"\nPath with the lowest average probability: {' -> '.join(map(str, worst_path))}") | |
print(f"Average probability: {worst_mean_prob:.2f}") | |
if longest_path: | |
print(f"\nPath with the longest duration: {' -> '.join(map(str, longest_path))}") | |
print(f"Duration: {max(G.nodes[node]['pos'][0] for node in longest_path) - min(G.nodes[node]['pos'][0] for node in longest_path):.2f}") | |
if shortest_path: | |
print(f"\nPath with the shortest duration: {' -> '.join(map(str, shortest_path))}") | |
print(f"Duration: {max(G.nodes[node]['pos'][0] for node in shortest_path) - min(G.nodes[node]['pos'][0] for node in shortest_path):.2f}") | |
if best_path: | |
draw_path_3d_interactive(G, best_path, 'blue') | |
if worst_path: | |
draw_path_3d_interactive(G, worst_path, 'red') | |
if longest_path: | |
draw_path_3d_interactive(G, longest_path, 'green') | |
if shortest_path: | |
draw_path_3d_interactive(G, shortest_path, 'purple') | |
return None # No need to return a filename for interactive plot | |