Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,16 +4,18 @@ import numpy as np
|
|
4 |
import matplotlib.pyplot as plt
|
5 |
import yfinance as yf
|
6 |
|
|
|
7 |
@st.cache_data
|
8 |
def load_data(ticker):
|
9 |
# Fetch data from Yahoo Finance
|
10 |
return yf.download(ticker, start="2000-01-01", end="2023-01-01")
|
11 |
|
|
|
|
|
|
|
12 |
ticker = st.text_input("Enter the ticker symbol", "AAPL")
|
13 |
data = load_data(ticker)
|
14 |
|
15 |
-
st.title("Algorithmic Trading Strategy Backtesting")
|
16 |
-
|
17 |
# Moving Average Windows
|
18 |
short_window = st.number_input("Short moving average window", 1, 50, 20)
|
19 |
long_window = st.number_input("Long moving average window", 1, 200, 50)
|
@@ -21,6 +23,7 @@ long_window = st.number_input("Long moving average window", 1, 200, 50)
|
|
21 |
# Initial Capital
|
22 |
initial_capital = st.number_input("Initial Capital", 1000, 1000000, 100000)
|
23 |
|
|
|
24 |
# Calculate moving averages
|
25 |
data['Short_MA'] = data['Close'].rolling(window=short_window).mean()
|
26 |
data['Long_MA'] = data['Close'].rolling(window=long_window).mean()
|
@@ -28,7 +31,7 @@ data['Long_MA'] = data['Close'].rolling(window=long_window).mean()
|
|
28 |
# Drop NaN values
|
29 |
data.dropna(inplace=True)
|
30 |
|
31 |
-
# Generate
|
32 |
data['Signal'] = 0
|
33 |
data['Signal'][short_window:] = np.where(data['Short_MA'][short_window:] > data['Long_MA'][short_window:], 1, 0)
|
34 |
data['Position'] = data['Signal'].diff()
|
@@ -36,6 +39,7 @@ data['Position'] = data['Signal'].diff()
|
|
36 |
# Show signals in data
|
37 |
st.write(data.tail())
|
38 |
|
|
|
39 |
# Simulate portfolio
|
40 |
data['Portfolio Value'] = initial_capital
|
41 |
data['Portfolio Value'][short_window:] = initial_capital * (1 + data['Signal'][short_window:].shift(1) * data['Close'].pct_change()[short_window:]).cumprod()
|
@@ -47,14 +51,15 @@ sharpe_ratio = data['Portfolio Value'].pct_change().mean() / data['Portfolio Val
|
|
47 |
st.write(f"CAGR: {cagr:.2%}")
|
48 |
st.write(f"Sharpe Ratio: {sharpe_ratio:.2f}")
|
49 |
|
|
|
50 |
# Plot strategy performance
|
51 |
-
plt.
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
st.pyplot()
|
58 |
|
59 |
# Highlight buy and sell signals
|
60 |
fig, ax = plt.subplots(figsize=(10, 5))
|
@@ -63,9 +68,8 @@ ax.plot(data.index, data['Short_MA'], label=f'Short MA ({short_window})', alpha=
|
|
63 |
ax.plot(data.index, data['Long_MA'], label=f'Long MA ({long_window})', alpha=0.75)
|
64 |
ax.plot(data[data['Position'] == 1].index, data['Short_MA'][data['Position'] == 1], '^', markersize=10, color='g', lw=0, label='Buy Signal')
|
65 |
ax.plot(data[data['Position'] == -1].index, data['Short_MA'][data['Position'] == -1], 'v', markersize=10, color='r', lw=0, label='Sell Signal')
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
st.pyplot(fig)
|
71 |
-
|
|
|
4 |
import matplotlib.pyplot as plt
|
5 |
import yfinance as yf
|
6 |
|
7 |
+
# Function to load historical data
|
8 |
@st.cache_data
|
9 |
def load_data(ticker):
|
10 |
# Fetch data from Yahoo Finance
|
11 |
return yf.download(ticker, start="2000-01-01", end="2023-01-01")
|
12 |
|
13 |
+
# User inputs for strategy parameters
|
14 |
+
st.title("Algorithmic Trading Strategy Backtesting")
|
15 |
+
|
16 |
ticker = st.text_input("Enter the ticker symbol", "AAPL")
|
17 |
data = load_data(ticker)
|
18 |
|
|
|
|
|
19 |
# Moving Average Windows
|
20 |
short_window = st.number_input("Short moving average window", 1, 50, 20)
|
21 |
long_window = st.number_input("Long moving average window", 1, 200, 50)
|
|
|
23 |
# Initial Capital
|
24 |
initial_capital = st.number_input("Initial Capital", 1000, 1000000, 100000)
|
25 |
|
26 |
+
# Data Preprocessing
|
27 |
# Calculate moving averages
|
28 |
data['Short_MA'] = data['Close'].rolling(window=short_window).mean()
|
29 |
data['Long_MA'] = data['Close'].rolling(window=long_window).mean()
|
|
|
31 |
# Drop NaN values
|
32 |
data.dropna(inplace=True)
|
33 |
|
34 |
+
# Generate Trading Signals
|
35 |
data['Signal'] = 0
|
36 |
data['Signal'][short_window:] = np.where(data['Short_MA'][short_window:] > data['Long_MA'][short_window:], 1, 0)
|
37 |
data['Position'] = data['Signal'].diff()
|
|
|
39 |
# Show signals in data
|
40 |
st.write(data.tail())
|
41 |
|
42 |
+
# Backtesting Engine
|
43 |
# Simulate portfolio
|
44 |
data['Portfolio Value'] = initial_capital
|
45 |
data['Portfolio Value'][short_window:] = initial_capital * (1 + data['Signal'][short_window:].shift(1) * data['Close'].pct_change()[short_window:]).cumprod()
|
|
|
51 |
st.write(f"CAGR: {cagr:.2%}")
|
52 |
st.write(f"Sharpe Ratio: {sharpe_ratio:.2f}")
|
53 |
|
54 |
+
# Data Visualization
|
55 |
# Plot strategy performance
|
56 |
+
fig, ax = plt.subplots(figsize=(10, 5))
|
57 |
+
ax.plot(data.index, data['Portfolio Value'], label='Portfolio Value')
|
58 |
+
ax.set_title(f"Backtested Performance of {ticker} Strategy")
|
59 |
+
ax.set_xlabel("Date")
|
60 |
+
ax.set_ylabel("Portfolio Value")
|
61 |
+
ax.legend()
|
62 |
+
st.pyplot(fig)
|
63 |
|
64 |
# Highlight buy and sell signals
|
65 |
fig, ax = plt.subplots(figsize=(10, 5))
|
|
|
68 |
ax.plot(data.index, data['Long_MA'], label=f'Long MA ({long_window})', alpha=0.75)
|
69 |
ax.plot(data[data['Position'] == 1].index, data['Short_MA'][data['Position'] == 1], '^', markersize=10, color='g', lw=0, label='Buy Signal')
|
70 |
ax.plot(data[data['Position'] == -1].index, data['Short_MA'][data['Position'] == -1], 'v', markersize=10, color='r', lw=0, label='Sell Signal')
|
71 |
+
ax.set_title(f"{ticker} Price and Trading Signals")
|
72 |
+
ax.set_xlabel("Date")
|
73 |
+
ax.set_ylabel("Price")
|
74 |
+
ax.legend()
|
75 |
st.pyplot(fig)
|
|