from transformers import AutoProcessor, AutoModel import torch import gradio as gr from PIL import Image # โหลด processor และ model model_name = "google/siglip2-base-patch16-224" processor = AutoProcessor.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) # ฟังก์ชันประมวลผล def match_image_text(image, text): inputs = processor(text=text, images=image, return_tensors="pt", padding=True) with torch.no_grad(): outputs = model(**inputs) image_embeds = outputs.image_embeds text_embeds = outputs.text_embeds # คำนวณ cosine similarity similarity = torch.nn.functional.cosine_similarity(image_embeds, text_embeds).item() return f"Similarity score: {similarity:.4f}" # Gradio UI gr.Interface( fn=match_image_text, inputs=[gr.Image(type="pil"), gr.Textbox(label="Enter a caption")], outputs="text", title="SigLIP2 Image-Text Similarity", description="ใส่รูป + คำบรรยาย แล้วดูว่าโมเดลคิดว่าแมตช์กันแค่ไหน" ).launch()