import gradio as gr from frame_semantic_transformer import FrameSemanticTransformer from transformers import T5ForConditionalGeneration, T5TokenizerFast from frame_semantic_transformer.data.frame_types import Frame from frame_semantic_transformer.data.loaders.loader import InferenceLoader import pandas as pd import ast import re import os from nltk.stem import SnowballStemmer # Huggingface model path huggingface_model_path = "nelsonjq/frame-semantic-transformer-french-small" # Load the model and tokenizer from Huggingface model = T5ForConditionalGeneration.from_pretrained(huggingface_model_path) tokenizer = T5TokenizerFast.from_pretrained(huggingface_model_path) # Load the DataFrame import subprocess os.makedirs("Asfalda", exist_ok=True) subprocess.run(['wget', '--output-document=Asfalda/frame_lus_df.tsv', 'https://seafile.unistra.fr/f/0155ced00b8d441eb131/?dl=1'] ) frame_lus_df = pd.read_csv("Asfalda/frame_lus_df.tsv", delimiter='\t') # Filter out 'Other_sense' and normalize frame names frame_lus_df = frame_lus_df[frame_lus_df['Name'] != 'Other_sense'] frame_lus_df['Name'] = frame_lus_df['Name'].apply(lambda x: x.split(".")[0]) frame_lus_df['Name'] = frame_lus_df['Name'].str.replace(r'^[Ff][Rr][Vv]_', '', regex=True) # Add missing frame names new_row_Suasion = { 'Name': 'Suasion', 'Core_Elms': "['Content', 'Cognizer', 'Persuader', 'Target', 'Text', 'Action', 'Addressee']", 'Non_Core_Elms': "['Speaker', 'Topic']", 'Lus': "['convaincre.v', 'convertir.v', 'persuader.v', 'convaincant.a', 'persuasion.n', 'dissuader.v', 'apprendre.v', 'dissuasion.n', 'décider.v']", 'Lus_simple': "['convaincre', 'convertir', 'persuader', 'convaincant', 'persuasion', 'dissuader', 'apprendre', 'dissuasion', 'décider']" } new_row_Arriving = { 'Name': 'Arriving', 'Core_Elms': "['Theme', 'Goal']", 'Non_Core_Elms': "['Target', 'Means']", 'Lus': "['gagner.v']", 'Lus_simple': "['gagner']" } new_row_Suasion_df = pd.DataFrame([new_row_Suasion]) new_row_Arriving_df = pd.DataFrame([new_row_Arriving]) frame_lus_df = pd.concat([frame_lus_df, new_row_Suasion_df, new_row_Arriving_df], ignore_index=True) # Define FrenchInferenceLoader french_stemmer = SnowballStemmer("french") def extract_frame(df_row_frame) -> Frame: name = df_row_frame['Name'] core_elms = ast.literal_eval(df_row_frame['Core_Elms']) non_core_elms = ast.literal_eval(df_row_frame['Non_Core_Elms']) lus = ast.literal_eval(df_row_frame['Lus']) return Frame(name=name, core_elements=core_elms, non_core_elements=non_core_elms, lexical_units=lus) class FrenchInferenceLoader(InferenceLoader): def __init__(self, french_framenet_df_file): self.frames = [] for index, row in french_framenet_df_file.iterrows(): frame = extract_frame(row) self.frames.append(frame) def load_frames(self): return self.frames def normalize_lexical_unit_text(self, lu: str) -> str: normalized_lu = lu.lower() if '.' in normalized_lu: normalized_lu = normalized_lu.split('.')[0] normalized_lu = re.sub(r"[^a-z0-9 ]", "", normalized_lu) return french_stemmer.stem(normalized_lu) # Initialize the FrenchInferenceLoader and FrameSemanticTransformer inference_loader = FrenchInferenceLoader(frame_lus_df) transformer = FrameSemanticTransformer(huggingface_model_path, inference_loader=inference_loader) # Function to process the input sentence and display frame detection results def detect_frames_in_text(input_text): result = transformer.detect_frames(input_text) output = f"Results found in the sentence:\n\n{result.sentence}\n" for frame in result.frames: output += f"\nFRAME: {frame.name}\n\nFrame Elements:\n" for element in frame.frame_elements: output += f"\t\t{element.name}: {element.text}\n" return output # Gradio interface iface = gr.Interface( fn=detect_frames_in_text, inputs="text", outputs="text", title="French Frame Detection App", description="Enter a French sentence to detect frames and frame elements using the FrameSemanticTransformer model." ) # Launch the app iface.launch()