Spaces:
Runtime error
Runtime error
import gradio as gr | |
from frame_semantic_transformer import FrameSemanticTransformer | |
from transformers import T5ForConditionalGeneration, T5TokenizerFast | |
from frame_semantic_transformer.data.frame_types import Frame | |
from frame_semantic_transformer.data.loaders.loader import InferenceLoader | |
import pandas as pd | |
import ast | |
import re | |
import os | |
from nltk.stem import SnowballStemmer | |
# Huggingface model path | |
huggingface_model_path = "nelsonjq/frame-semantic-transformer-french-small" | |
# Load the model and tokenizer from Huggingface | |
model = T5ForConditionalGeneration.from_pretrained(huggingface_model_path) | |
tokenizer = T5TokenizerFast.from_pretrained(huggingface_model_path) | |
# Load the DataFrame | |
import subprocess | |
os.makedirs("Asfalda", exist_ok=True) | |
subprocess.run(['wget', '--output-document=Asfalda/frame_lus_df.tsv', 'https://seafile.unistra.fr/f/0155ced00b8d441eb131/?dl=1'] | |
) | |
frame_lus_df = pd.read_csv("Asfalda/frame_lus_df.tsv", delimiter='\t') | |
# Filter out 'Other_sense' and normalize frame names | |
frame_lus_df = frame_lus_df[frame_lus_df['Name'] != 'Other_sense'] | |
frame_lus_df['Name'] = frame_lus_df['Name'].apply(lambda x: x.split(".")[0]) | |
frame_lus_df['Name'] = frame_lus_df['Name'].str.replace(r'^[Ff][Rr][Vv]_', '', regex=True) | |
# Add missing frame names | |
new_row_Suasion = { | |
'Name': 'Suasion', | |
'Core_Elms': "['Content', 'Cognizer', 'Persuader', 'Target', 'Text', 'Action', 'Addressee']", | |
'Non_Core_Elms': "['Speaker', 'Topic']", | |
'Lus': "['convaincre.v', 'convertir.v', 'persuader.v', 'convaincant.a', 'persuasion.n', 'dissuader.v', 'apprendre.v', 'dissuasion.n', 'décider.v']", | |
'Lus_simple': "['convaincre', 'convertir', 'persuader', 'convaincant', 'persuasion', 'dissuader', 'apprendre', 'dissuasion', 'décider']" | |
} | |
new_row_Arriving = { | |
'Name': 'Arriving', | |
'Core_Elms': "['Theme', 'Goal']", | |
'Non_Core_Elms': "['Target', 'Means']", | |
'Lus': "['gagner.v']", | |
'Lus_simple': "['gagner']" | |
} | |
new_row_Suasion_df = pd.DataFrame([new_row_Suasion]) | |
new_row_Arriving_df = pd.DataFrame([new_row_Arriving]) | |
frame_lus_df = pd.concat([frame_lus_df, new_row_Suasion_df, new_row_Arriving_df], ignore_index=True) | |
# Define FrenchInferenceLoader | |
french_stemmer = SnowballStemmer("french") | |
def extract_frame(df_row_frame) -> Frame: | |
name = df_row_frame['Name'] | |
core_elms = ast.literal_eval(df_row_frame['Core_Elms']) | |
non_core_elms = ast.literal_eval(df_row_frame['Non_Core_Elms']) | |
lus = ast.literal_eval(df_row_frame['Lus']) | |
return Frame(name=name, core_elements=core_elms, non_core_elements=non_core_elms, lexical_units=lus) | |
class FrenchInferenceLoader(InferenceLoader): | |
def __init__(self, french_framenet_df_file): | |
self.frames = [] | |
for index, row in french_framenet_df_file.iterrows(): | |
frame = extract_frame(row) | |
self.frames.append(frame) | |
def load_frames(self): | |
return self.frames | |
def normalize_lexical_unit_text(self, lu: str) -> str: | |
normalized_lu = lu.lower() | |
if '.' in normalized_lu: | |
normalized_lu = normalized_lu.split('.')[0] | |
normalized_lu = re.sub(r"[^a-z0-9 ]", "", normalized_lu) | |
return french_stemmer.stem(normalized_lu) | |
# Initialize the FrenchInferenceLoader and FrameSemanticTransformer | |
inference_loader = FrenchInferenceLoader(frame_lus_df) | |
transformer = FrameSemanticTransformer(huggingface_model_path, inference_loader=inference_loader) | |
# Function to process the input sentence and display frame detection results | |
def detect_frames_in_text(input_text): | |
result = transformer.detect_frames(input_text) | |
output = f"Results found in the sentence:\n\n{result.sentence}\n" | |
for frame in result.frames: | |
output += f"\nFRAME: {frame.name}\n\nFrame Elements:\n" | |
for element in frame.frame_elements: | |
output += f"\t\t{element.name}: {element.text}\n" | |
return output | |
# Gradio interface | |
iface = gr.Interface( | |
fn=detect_frames_in_text, | |
inputs="text", | |
outputs="text", | |
title="French Frame Detection App", | |
description="Enter a French sentence to detect frames and frame elements using the FrameSemanticTransformer model." | |
) | |
# Launch the app | |
iface.launch() | |